一、大赛背景与定位
第三届世界科学智能大赛由上海市科学技术委员会等多部门指导,上海科学智能研究院与复旦大学联合主办,阿里云、复星医药等机构协办,总奖金池达百万元,面向全球开放。大赛聚焦科学智能与高价值产业场景的融合,设置航空安全、材料设计、合成生物、创新药、新能源五大赛道,旨在推动人工智能(AI)技术在复杂科学问题中的突破,加速科研范式变革。
创新药赛道作为核心方向之一,以 “RNA 逆折叠与功能核酸设计” 为主题,要求参赛者基于给定的 RNA 三维骨架结构,设计能够折叠成该结构的 RNA 序列。这一赛题直接关联 RNA 药物开发、mRNA 疫苗优化、生物传感器设计等前沿领域,是科学智能技术在生物医药产业落地的关键突破口。
二、赛题核心:RNA 逆折叠的科学挑战
RNA 的功能高度依赖其三维结构,而 RNA 逆折叠(Inverse RNA Folding)是指从目标三维结构反向设计 RNA 序列的过程。这一问题的挑战性体现在以下方面:
- 结构 - 序列逆映射难题:RNA 序列的折叠路径受热力学、动力学及环境因素(如离子浓度、温度)的多重影响,需建立跨尺度模型以解析结构与序列的关联。
- 多目标优化需求:理想的 RNA 序列不仅需匹配目标结构,还需具备生物学稳定性、低免疫原性等特性,需平衡多维度约束条件。
- 计算复杂度:RNA 分子的构象空间庞大,传统分子动力学模拟难以高效求解,需借助深度学习、强化学习等 AI 方法加速搜索。
技术路径:
- AI 驱动的生成模型:如上海元码智药近期获批的 “双曲离散扩散模型”,通过双曲等变图神经网络(Hyperbolic Isometric Graph Neural Network)将 RNA 结构嵌入几何空间,结合扩散过程逐步去噪,实现高效序列生成。
- 物理模型与数据融合:结合第一性原理(如自由能计算)与大规模实验数据(如 siRNA 药物研发数据集),提升模型的泛化能力。
三、评估标准与技术工具
- 核心指标:恢复率(Recovery Rate)
通过比对生成序列与真实折叠成目标结构的 RNA 序列的相似性(如 BLAST 或序列比对工具),评估算法的准确性。恢复率越高,表明模型对结构 - 序列关系的建模越精准。 - 算力与数据支持
复旦大学 CFFF 智算平台为参赛团队提供 400 卡 GPU 的算力支持,并开放高质量科学数据集,包括 6TB 次季节气象预测数据、9.6 万条 siRNA 修饰序列等,助力复杂模型训练。
现有工具与前沿技术 - 传统算法:如 Rosetta(蛋白质 / RNA 结构建模)、NUPACK(核酸分子设计)等,但在三维结构逆折叠中存在效率瓶颈。
- AI 创新:AlphaFold3、RoseTTAFold All-Atom 等模型在蛋白质复合物预测中取得进展,其技术思路可迁移至 RNA 设计。
四、应用前景与产业价值
RNA 逆折叠技术的突破将重塑生物医药研发范式:
- RNA 药物开发:设计靶向疾病相关 RNA 结构的序列,如反义 RNA、RNA 适配体,用于精准调控基因表达。
- mRNA 疫苗优化:通过结构设计提升疫苗的稳定性、递送效率及免疫激活效果,缩短研发周期。
- 合成生物学:构建可响应环境信号的 RNA 开关(Riboswitch),用于细胞编程与代谢通路调控。
- 生物传感器:设计对特定分子(如病毒蛋白、小分子药物)敏感的 RNA 结构,实现高灵敏度检测。
产业案例:上海元码智药的专利技术已展示出在三维 RNA 结构逆折叠中的潜力,其双曲扩散模型可在有限样本下恢复核苷酸分布,为 RNA 药物的智能化设计提供新工具
五、模型训练
进阶模型训练代码:
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch_geometric
from torch_geometric.data import Data
from torch_geometric.nn import TransformerConv, LayerNorm
from torch_geometric.nn import radius_graph
from Bio import SeqIO
import math
# 配置参数
class Config:
seed = 42
device = "cuda" if torch.cuda.is_available() else "cpu"
batch_size = 16 if torch.cuda.is_available() else 8 # 根据显存调整
lr = 0.001
epochs = 50
seq_vocab = "AUCG"
coord_dims = 7
hidden_dim = 256
num_layers = 4 # 减少层数防止显存溢出
k_neighbors = 20
dropout = 0.1
rbf_dim = 16
num_heads = 4
amp_enabled = True # 混合精度训练
# 几何特征生成器
class GeometricFeatures:
@staticmethod
def rbf(D, D_min=0., D_max=20., D_count=16):
device = D.device
D_mu = torch.linspace(D_min, D_max, D_count, device=device)
D_mu = D_mu.view(*[1]*len(D.shape), -1)
D_sigma = (D_max - D_min) / D_count
D_expand = D.unsqueeze(-1)
return torch.exp(-((D_expand - D_mu)/D_sigma) ** 2)
@staticmethod
def dihedrals(X, eps=1e-7):
X = X.to(torch.float32)
L = X.shape[0]
dX = X[1:] - X[:-1]
U = F.normalize(dX, dim=-1)
# 计算连续三个向量
u_prev = U[:-2]
u_curr = U[1:-1]
u_next = U[2:]
# 计算法向量
n_prev = F.normalize(torch.cross(u_prev, u_curr, dim=-1), dim=-1)
n_curr = F.normalize(torch.cross(u_curr, u_next, dim=-1), dim=-1)
# 计算二面角
cosD = (n_prev * n_curr).sum(-1)
cosD = torch.clamp(cosD, -1+eps, 1-eps)
D = torch.sign((u_prev * n_curr).sum(-1)) * torch.acos(cosD)
# 填充处理
if D.shape[0] < L:
D = F.pad(D, (0,0,0,L-D.shape[0]), "constant", 0)
return torch.stack([torch.cos(D[:,:5]), torch.sin(D[:,:5])], -1).view(L,-1)
@staticmethod
def direction_feature(X):
dX = X[1:] - X[:-1]
return F.pad(F.normalize(dX, dim=-1), (0,0,0,1))
# 图构建器
class RNAGraphBuilder:
@staticmethod
def build_graph(coord, seq):
assert coord.shape[1:] == (7,3), f"坐标维度错误: {coord.shape}"
coord = torch.tensor(coord, dtype=torch.float32)
# 节点特征
node_feats = [
coord.view(-1, 7 * 3), # [L,21]
GeometricFeatures.dihedrals(coord[:,:6,:]), # [L,10]
GeometricFeatures.direction_feature(coord[:,4,:]) # [L,3]
]
x = torch.cat(node_feats, dim=-1) # [L,34]
# 边构建
pos = coord[:,4,:]
edge_index = radius_graph(pos, r=20.0, max_num_neighbors=Config.k_neighbors)
# 边特征
row, col = edge_index
edge_vec = pos[row] - pos[col]
edge_dist = torch.norm(edge_vec, dim=-1, keepdim=True)
edge_feat = torch.cat([
GeometricFeatures.rbf(edge_dist).squeeze(1), # [E,16]
F.normalize(edge_vec, dim=-1) # [E,3]
], dim=-1) # [E,19]
# 标签
y = torch.tensor([Config.seq_vocab.index(c) for c in seq], dtype=torch.long)
return Data(x=x, edge_index=edge_index, edge_attr=edge_feat, y=y)
# 模型架构
class RNAGNN(nn.Module):
def __init__(self):
super().__init__()
# 节点特征编码
self.feat_encoder = nn.Sequential(
nn.Linear(34, Config.hidden_dim),
nn.ReLU(),
LayerNorm(Config.hidden_dim),
nn.Dropout(Config.dropout)
)
# 边特征编码(关键修复)
self.edge_encoder = nn.Sequential(
nn.Linear(19, Config.hidden_dim),
nn.ReLU(),
LayerNorm(Config.hidden_dim),
nn.Dropout(Config.dropout)
)
# Transformer卷积层
self.convs = nn.ModuleList([
TransformerConv(
Config.hidden_dim,
Config.hidden_dim // Config.num_heads,
heads=Config.num_heads,
edge_dim=Config.hidden_dim, # 匹配编码后维度
dropout=Config.dropout
) for _ in range(Config.num_layers)
])
# 残差连接
self.mlp_skip = nn.ModuleList([
nn.Sequential(
nn.Linear(Config.hidden_dim, Config.hidden_dim),
nn.ReLU(),
LayerNorm(Config.hidden_dim)
) for _ in range(Config.num_layers)
])
# 分类头
self.cls_head = nn.Sequential(
nn.Linear(Config.hidden_dim, Config.hidden_dim),
nn.ReLU(),
LayerNorm(Config.hidden_dim),
nn.Dropout(Config.dropout),
nn.Linear(Config.hidden_dim, len(Config.seq_vocab))
)
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
def forward(self, data):
x, edge_index, edge_attr = data.x, data.edge_index, data.edge_attr
# 边特征编码(关键步骤)
edge_attr = self.edge_encoder(edge_attr) # [E,19] -> [E,256]
# 节点编码
h = self.feat_encoder(x)
# 消息传递
for i, (conv, skip) in enumerate(zip(self.convs, self.mlp_skip)):
h_res = conv(h, edge_index, edge_attr=edge_attr)
h = h + skip(h_res)
if i < len(self.convs)-1:
h = F.relu(h)
h = F.dropout(h, p=Config.dropout, training=self.training)
return self.cls_head(h)
# 数据增强
class CoordTransform:
@staticmethod
def random_rotation(coords):
device = torch.device(Config.device)
coords_tensor = torch.from_numpy(coords).float().to(device)
angle = np.random.uniform(0, 2*math.pi)
rot_mat = torch.tensor([
[math.cos(angle), -math.sin(angle), 0],
[math.sin(angle), math.cos(angle), 0],
[0, 0, 1]
], device=device)
return (coords_tensor @ rot_mat.T).cpu().numpy()
# 数据集类
class RNADataset(torch.utils.data.Dataset):
def __init__(self, coords_dir, seqs_dir, augment=False):
self.samples = []
self.augment = augment
for fname in os.listdir(coords_dir):
# 加载坐标
coord = np.load(os.path.join(coords_dir, fname))
coord = np.nan_to_num(coord, nan=0.0)
# 数据增强
if self.augment and np.random.rand() > 0.5:
coord = CoordTransform.random_rotation(coord)
# 加载序列
seq_id = os.path.splitext(fname)[0]
seq_path = os.path.join(seqs_dir, f"{seq_id}.fasta")
seq = str(next(SeqIO.parse(seq_path, "fasta")).seq)
# 构建图
self.samples.append(RNAGraphBuilder.build_graph(coord, seq))
def __len__(self): return len(self.samples)
def __getitem__(self, idx): return self.samples[idx]
# 训练函数
def train(model, loader, optimizer, scheduler, criterion):
model.train()
scaler = torch.cuda.amp.GradScaler(enabled=Config.amp_enabled)
total_loss = 0
for batch in loader:
batch = batch.to(Config.device)
optimizer.zero_grad()
with torch.cuda.amp.autocast(enabled=Config.amp_enabled):
logits = model(batch)
loss = criterion(logits, batch.y)
scaler.scale(loss).backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
scaler.step(optimizer)
scaler.update()
total_loss += loss.item()
scheduler.step()
return total_loss / len(loader)
# 评估函数
def evaluate(model, loader):
model.eval()
total_correct = total_nodes = 0
with torch.no_grad():
for batch in loader:
batch = batch.to(Config.device)
logits = model(batch)
preds = logits.argmax(dim=1)
total_correct += (preds == batch.y).sum().item()
total_nodes += batch.y.size(0)
return total_correct / total_nodes
if __name__ == "__main__":
# 初始化
torch.manual_seed(Config.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(Config.seed)
torch.backends.cudnn.benchmark = True
# 数据集
train_set = RNADataset(
"./RNA_design_public/RNAdesignv1/train/coords",
"./RNA_design_public/RNAdesignv1/train/seqs",
augment=True
)
# 划分数据集
train_size = int(0.8 * len(train_set))
val_size = (len(train_set) - train_size) // 2
test_size = len(train_set) - train_size - val_size
train_set, val_set, test_set = torch.utils.data.random_split(
train_set, [train_size, val_size, test_size])
# 数据加载
train_loader = torch_geometric.loader.DataLoader(
train_set,
batch_size=Config.batch_size,
shuffle=True,
pin_memory=True,
num_workers=4
)
val_loader = torch_geometric.loader.DataLoader(val_set, batch_size=Config.batch_size)
test_loader = torch_geometric.loader.DataLoader(test_set, batch_size=Config.batch_size)
# 模型初始化
model = RNAGNN().to(Config.device)
optimizer = optim.AdamW(model.parameters(), lr=Config.lr, weight_decay=0.01)
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=Config.epochs)
criterion = nn.CrossEntropyLoss()
# 训练循环
best_acc = 0
for epoch in range(Config.epochs):
train_loss = train(model, train_loader, optimizer, scheduler, criterion)
val_acc = evaluate(model, val_loader)
print(f"Epoch {epoch+1}/{Config.epochs} | Loss: {train_loss:.4f} | Val Acc: {val_acc:.4f}")
if val_acc > best_acc:
best_acc = val_acc
torch.save(model.state_dict(), "best_model.pth")
# 最终测试
model.load_state_dict(torch.load("best_model.pth"))
test_acc = evaluate(model, test_loader)
print(f"\nFinal Test Accuracy: {test_acc:.4f}")
参赛感受
本次比赛用到了前沿的技术,利用深度学习技术预测RNA折叠,利用阿里云镜像仓库,实现代码开发与codeup代码管理,容器仓库联用。利用企业级完整的技术链进行快速迭代开发比赛。难点就是需要对技术栈要求比较全面,否则很难走完全流程。阿里云容器服务,个人服务因为人多,限制了云镜像构建,导致个人本地构建花了很多时间,希望阿里云后期可以改善这方面的支持。其他的都很不错,希望可以参与更多类似的研究,比赛。