网易搬砖头

网易资深游戏服务器架构设计,分享游戏服务器,客户端,深度学习经验

  • 博客(928)
  • 资源 (92)
  • 收藏
  • 关注

原创 揭秘人工智能和机器学习中的模型蒸馏

想象一下,训练一个庞大的神经网络——一个能够诊断疾病、驾驶自动驾驶汽车或生成类似人类的文本的庞然大物——却发现部署如此庞大的模型就像试图驾驶一辆油箱很小的跑车跑马拉松一样。这种较高的温度会产生更平滑、更具信息量的分布,揭示硬性独热标签无法捕捉的“暗知识”(类别之间的微妙关系)。这段旅程——从早期的“暗知识”到生成式人工智能的现代应用——提醒我们,即使是最大的模型也可以被驯服和改进,把巨人变成短跑运动员。的工作为大量研究奠定了基础,提供了将深度神经网络的功能压缩为更易于部署且成本更低的灵活模型的蓝图。

2025-02-25 00:15:00 272

原创 【中级篇】深研究:与Dify建立研究自动化应用

通过利用Dify的功能,可以大大减少在手动研究上花费的时间和精力,同时轻松地将多搜索工作流程适应各种主题,API或数据源。那么在这里我推荐大家使用Dify,它是一个用于LLM应用程序开发的低代码,开源平台,它通过自动化工作流程的多步搜索和有效汇总来解决此问题,仅需要最小的编码。在本文中,我们将创建“ Deepresearch”,该工具可以协调搜索,生成关键字并将结果汇​​总到最终的结果中。迭代节点将在每次迭代的结论结束时启动下一个搜索回合,或者如果该过程确定已经收集了足够的信息,则将终止该过程。

2025-02-19 21:30:00 897

原创 【中级篇】借助DeepSeek R1与开源低代码平台Dify,实战演练快速打造企业级多语种文档翻译解决方案

然后在 Iteration 节点内添加节点,由于 LLM 无法直接读取上传文档的内容,因此需要添加 Document Extractor,将文档内容转换为 LLM 可以读取的文本,Document Extractor 的输入变量为 Start 节点中的文件 file。在Start节点中我们设置了一个文件列表,为了避免重复构建工作流节点,Dify引入了迭代节点,在迭代节点中,工作流会将所有列表类型的变量全部执行完毕并分别输出。如果想进一步开发应用的前端界面,可以参考Dify的API文档,点击右侧的“

2025-02-18 11:20:56 367

原创 【高级篇】了解 DeepSeek-R1 中的强化学习

在本文中,我们将探索理解 DeepSeek-R1 所必需的 RL 基本方面,深入研究 RL 在 LLM 中的应用方式,分析近端策略优化 (PPO) 在先前模型中的作用,讨论其局限性,并解释为什么在 DeepSeekMath 中引入了组相对策略优化 (GRPO) 并随后应用于 DeepSeek-R1。与在 RL 之前依赖监督微调 (SFT) 的传统方法不同,DeepSeek-R1 仅使用 RL (DeepSeek-R1-Zero) 进行训练,从而能够发展自我改进的推理技能。修改了传统的 RL 方法。

2025-02-11 09:34:28 917

原创 DeepSeek Janus Pro 论文解析

介绍业界还在适应最近发布的震惊人工智能界的 DeepSeek-R1。但不久之后,DeepSeek 又发布了另一个出色的开源模型。这一次,它是一个可以与其他顶级多模态模型相媲美的。在这篇文章中,我们将解释 DeepSeek Janus Pro 背后的研究论文,标题为“要理解这篇论文,我们还需要解释 DeepSeek 之前的论文,该论文介绍了早期的 Janus 模型版本,标题为:“不需要有关原始 Janus 论文的先验知识。新论文以前一篇论文为基础,我们将在这篇文章中对两者进行解释。

2025-02-08 16:05:31 917

原创 解析 DeepSeek-R1 训练过程——无需博士学位

例如 (i) 冷启动数据奠定了结构化基础,解决了可读性差等问题,(ii) 纯 RL 几乎可以在自动驾驶仪上进行推理 (iii) 拒绝采样 + SFT 与顶级训练数据一起使用以提高准确性,以及 (iv) 另一个最终 RL 阶段确保了额外的泛化水平。示例:在对“2 + 2 =”这样的提示进行训练时,模型会因输出“4”而获得 +1 的奖励,而对于任何其他答案则获得 -1 的惩罚。OpenAI 一直对自己的方法秘而不宣,而 DeepSeek 则采取了相反的做法——公开分享他们的进展,并因坚持开源使命而赢得赞誉。

2025-02-08 15:50:43 1553 1

原创 【高级篇】DeepSeek R1 详解:思维链、强化学习和蒸馏

DeepSeek R1 是由中国研究团队开发的新型大型语言模型。它意义重大,因为它在数学、编码和科学推理等复杂任务上表现出与 OpenAI 01 等领先模型相当的性能。该模型的创新,特别是在使用强化学习和模型蒸馏方面,可能会使人工智能更加高效和易于使用。

2025-02-08 13:42:41 836 5

原创 【入门级篇】DeepSeek R1 简单指南:架构、训练、本地部署和硬件要求

vllm serve deepseek-ai/DeepSeek-R1-Distill-Qwen-32B — tensor-parallel-size 2 — max-model-len 32768 — force-eager 等命令可用于精简版本。虽然 DeepSeek-R1-Zero 证明了纯强化学习是可行的,但 DeepSeek-R1 展示了如何将监督学习与强化学习相结合来创建一个更强大、更实用的模型。Ollama 提供不同尺寸的模型 — 基本上,更大的模型等于更智能的 AI,但需要更好的 GPU。

2025-02-05 10:33:32 5806

原创 最新的纯真数据库 qqwry.dat下载和使用(golang,php,python,js等语言调用代码)

纯真数据库是一个用于IP地址查询的数据库,主要用于确定一个IP地址所属的地理位置。它包含了全球范围内的IP地址段与对应的地理位置信息。纯真数据库可以通过IP地址来快速地确定该IP地址的所属地理位置,如国家、省份、城市等信息。纯真数据库的应用场景非常广泛,比如用于网页统计分析、广告投放、电子商务、网络安全等领域。它可以帮助企业确定用户的地理位置,从而进行更精准的市场推广;也可以用于对恶意IP地址的监控和封禁,提高网络安全性。纯真数据库由纯真网络公司维护和更新,用户可以通过购买授权来获取最新的数据库文件。

2025-01-03 15:07:13 802

原创 Unity中RTS游戏的设计模式处理: 游戏中的对象选择和命令委托的基本框架

单个集中类(例如,)跟踪当前选择的单元/对象,并处理用于选择游戏中对象的任何光线投射逻辑。可选对象附加了一个组件,其中公开了一个公共函数,该函数返回一个实现该接口的类。类实现特定于控制单个单元的自定义逻辑。这是通过一个公共函数完成的,每次玩家单击一个新对象时都会调用该函数。当玩家单击屏幕时,单个类会进行光线投射,以获取有关单击哪个对象的信息。该类还跟踪当前正在控制的单元,并将新单击的对象提供给该单元的控制逻辑。如果没有选择任何内容,我们将尝试选择接下来单击的对象。

2024-11-06 10:17:23 20436

原创 redis数据库备份,回档,迁移工具使用

相信很多服务器开发者或者运维同学都遇到过这样的场景,比如我要从阿里云的redis集群把数据迁移到另外一个账号下的或者另外一个云服务商的redis集群,或者单机,或者哨兵模式redis实例,那么这种情况下我推荐给大家一款非常好用的工具,可以无缝的从A集群/单机/哨兵/已有的数据库rdb文件 迁移到 B集群/单机/哨兵模式下的实例中。

2024-06-24 00:15:00 1276

原创 如何配置googleplay谷歌后台的Auth登陆和支付权限

相信很多谷歌开发者在谷歌平台发布过app产品,如果你接入过登陆和支付,那么你对下面的后台配置步骤以及服务器如何使用这些参数来进行校验并不陌生,这篇文章我将分享给大家关于如何在后台配置你上架应用的登陆权限和支付权限,服务器端如何使用相应的参数来做验证。

2024-04-24 00:30:00 9909 3

原创 internet.getUserEncryptKey提示错误

大家好,相信你看到标题的时候,你应该是遇到这样的麻烦事情,微信小游戏的官方文档的说明不够全面,所以导致开发者在开发过程中会遇到非常棘手的问题,但无奈的是官方给与的只有冷冰冰的文字,包括很多开发者在开发者平台留言自己遇到的问题,比如常见的这个:internet.getUserEncryptKey提示错误或者那么这篇文章我来给大家解释下正确的用法应该是什么样的(我们已经解决了,但微信官方文档一直没有更新细节)。

2024-04-22 17:57:54 47051

原创 游戏服务器架构:游戏服务端如何支持百万玩家同时在线

用通俗的方法来描述一个好的服务端架构,最基础也是最重要的就两点: 支持百万玩家同时在线,不出问题。这两点也就分别对应了高并发和高可用。这篇文章系统的介绍游戏服务端中的高并发和高可用。高并发和高可用是一个相辅相成的工作,当我们支持百万玩家同时在线时却无法保证服务器的稳定可用,那高并发支持就无从谈起;而如果当玩家数量较多时服务器就常常出问题,那也不能称为高可用。

2024-04-12 00:30:00 27736 4

原创 代理服务器:转发代理和反向代理是如何工作的?

这意味着如果多个用户请求相同的内容,代理可以从其缓存中提供该内容,而不是每次都从外部服务器获取内容,从而缩短加载时间并减少带宽。客户端向特定网址发送请求,反向代理将该请求转发到其背后的适当服务器。:关心隐私的个人可能会使用转发代理来隐藏他们访问的网站的 IP 地址和其他识别信息,从而难以跟踪他们的 Web 浏览活动。:它们将传入的网络流量分布在多个服务器上,确保没有任何一台服务器获得过多的负载,并防止任何服务器成为瓶颈。本质上,它接收来自客户端的请求,将其转发到相关服务器,然后将服务器的响应返回给客户端。

2024-04-02 00:15:00 59956

原创 Meta 如何将缓存一致性提高到 99.99999999

鲍勃、玛丽和爱丽丝。在这种情况下,当 TAO 副本查询 BOB 和 Mary 所在的区域时,它们的数据不一致,它会将消息发送到没有 Alice 消息的区域。绕过缓存的查询可能是计算密集型的,并且还可能使数据库面临风险,因为保护数据库和扩展读取繁重的工作负载是缓存的两个最常见的用例。根据定义,缓存不保存数据的真实来源,因此当真实来源中的数据发生更改时,应该有一个主动使过时缓存条目失效的过程。从元的角度来看,缓存不一致几乎与数据库中的数据丢失一样糟糕,从用户的角度来看,它们可能会导致非常糟糕的用户体验。

2024-04-01 11:00:42 59421

原创 GeoLite2 geoip数据库下载和使用

GeoLite2 数据库是免费的 IP 地理定位数据库,与MaxMind 的 GeoIP2 数据库相当,但准确度较低。GeoLite2 国家、城市和 ASN 数据库 每周更新两次,即每周二和周五。GeoLite2 数据还可作为 GeoLite2 Country 和 GeoLite2 City Web 服务中的 Web 服务提供。GeoLite2 Web 服务的用户每天每项服务的 IP 地址查找次数限制为 1000 次。

2024-03-27 10:57:16 87063 6

原创 掌握 Unity 中的状态机:综合指南

最后,将拥有一个由状态机驱动的功能齐全的播放器控制器,可以集成到自己的项目中。此外,状态机有助于实现复杂的人工智能、玩家控制、动画系统等,从而形成更强大、更灵活的游戏架构。状态机是计算机科学和游戏开发中的一个基本概念,它通过定义一组有限的状态及其之间的转换来模拟实体的行为。你可以定义常见的状态行为,例如 Enter、Update 和 Exit 方法,确保整个状态机架构的一致性和连贯性。由于前面提到的状态类扩展了 BaseState 类,因此我们可以为具有不同状态的不同对象创建单独的类。

2024-03-21 08:00:00 1207 2

原创 90 道系统设计面试题及答案

CDN 通过缓存和提供距离用户最近的服务器的内容来提高性能,从而减少延迟。算法的选择取决于特定的系统要求,例如处理相等的服务器负载(循环法)、最小化响应时间(最少连接)或提供服务器权重以实现更好的资源分配(加权循环法)。它是通过允许更新按照自己的节奏在系统中传播,最终达到一致的状态来实现的。最终一致性与强一致性的不同之处在于,它不保证立即数据一致性,但提供了改进的系统响应能力和容错能力的好处。有状态通信维护请求之间的会话数据,适用于维护上下文至关重要的情况,例如在实时应用程序或具有复杂工作流程的会话中。

2024-02-23 09:38:17 1502

原创 SOLID 原则:增强面向对象编程 (OOP)

SOLID 原则是增强面向对象编程的设计和结构的基本准则。通过遵守这些原则——单一职责、开放/封闭、里氏替换、接口隔离和依赖倒置——开发人员可以创建更加模块化、可扩展和可维护的代码。在本文中,我们将深入研究 SOLID 原则——单一职责、开放/封闭、里氏替换、接口隔离和依赖反转——并探讨它们如何通过实际代码示例提升 OOP 代码的设计和结构。它促进创建小型的、特定于客户端的接口,而不是大型的、单一的接口。通过遵守 ISP,我们可以防止不必要的方法和依赖项对客户端代码的污染,从而实现更干净、更集中的界面。

2024-02-22 09:38:35 1031

原创 微服务设计模式

我认为这是与微服务相关的大多数重要模式的综合列表。然而,该列表永远不会是完整的列表,因为随着微服务用例的不断发展,一些模式仍在不断发展。我将在以后的文章中更详细地介绍这些模式。微服务在过去十年中已经发展到现在非常成熟的水平。许多模式被演变以适应不同的需求。

2024-02-22 09:37:20 1464

原创 面向对象编程(OOP)中的重构和代码维护

然而,随着项目的发展,OOP 代码库可能变得越来越复杂,这使得它们的维护变得困难。重构,即在不改变其外部行为的情况下重构现有代码的过程,是 OOP 的基本实践。在本文中,我们将探讨重构和维护 OOP 代码库的技巧和技术,以保持它们的健壮性、可读性和适应性。俗话说,“阅读代码的次数比编写代码的次数多得多”,维护干净、结构良好的 OOP 代码将在未来带来好处,确保软件项目的寿命和成功。通过遵循这些技巧和技术,开发人员可以确保他们的 OOP 代码保持可读性、可维护性并能够响应不断变化的需求。

2024-02-21 09:47:43 1047 2

原创 错误处理和日志记录:构建弹性服务

随着数字环境的不断发展,通过强大的错误处理和日志记录实践来强化您的软件系统是打造经得起时间考验的可靠且有弹性的应用程序的最终途径。在软件开发领域,错综复杂的系统和复杂的代码库占据主导地位,有效的错误管理和建立全面的日志记录机制是构建健壮、可靠和用户友好的服务的基本要素。在本文中,我们对错误处理和日志记录进行了广泛的探索,包括错误处理策略的开发、日志记录机制的实施、警报系统对于主动问题解决的重要性,以及构成错误处理基石的其他考虑因素。配置关键事件和异常的警报,例如服务器故障、异常高的错误率或意外的流量峰值。

2024-02-20 10:59:26 955

原创 可扩展性和性能:数字化成功的支柱

在这个时代,用户对无缝、快速的数字体验的期望比以往任何时候都更高,优先考虑可扩展性和性能的组织才能脱颖而出。通过遵循这些原则,您可以为卓越的数字化奠定基础,确保您的系统不仅能够满足当今的需求,还能在面对未来的挑战时适应并蓬勃发展。水平扩展可确保您的系统能够无缝满足增加的需求,而垂直扩展可优化单个实例内的资源使用情况。性能优化可对您的系统进行微调,以实现极快的响应时间和高效的资源利用。在动态的数字技术世界中,用户的期望和对数字系统的需求不断增加,可扩展性和性能已成为孪生要素。这增强了系统的整体可靠性和性能。

2024-02-19 09:14:33 967

原创 设计健壮且可扩展的软件系统

系统设计是定义系统的架构、组件、模块、接口和数据以满足特定需求的过程。在本文中,我们将深入探讨系统设计的各个方面,涵盖 25 个关键主题,以帮助您了解设计健壮且可扩展的软件系统的复杂性。通过采用最佳实践、利用正确的技术并遵循此处概述的原则,您将为构建健壮、可扩展、安全和高性能的系统做好充分准备。深入了解系统设计中的这 25 个关键主题,您将有能力应对构建健壮、可扩展且可靠的软件系统的挑战。通过不断磨练您的技能并跟上行业趋势,您可以确保您的系统不仅满足当前的要求,而且还能适应未来的需求。

2024-02-19 09:13:42 1139

原创 网易+腾讯必问题库精选---错误处理和调试面试问题

本文探讨了不同编程语言(例如 Go、Rust、Kotlin、Swift、Ruby 或 JavaScript (Node.js))中错误处理的原则、实践和模式,重点介绍了特定于语言的构造、惯用方法或最佳实践用于确保跨不同领域、技术和环境的软件开发项目中的一致、稳健和可维护的错误管理。通过记录错误处理策略、调试技术或故障排除工作流程,并维护全面的最新文档,我可以促进代码审查,促进知识共享,并为软件开发团队提供必要的资源、见解或参考,以简化错误解决方案,增强代码可维护性,并促进软件开发项目中的协作。

2024-02-04 11:04:16 1005

原创 30个5年以上服务器开发经验的面试题

在我之前的职位中,由于意外的产品发布,我们面临着流量突然激增的情况。为了解决这个问题,我首先检查该应用程序是否有任何可用的更新或补丁,可以修复导致高资源消耗的潜在错误。一旦确定,请用相同的驱动器更换有故障的驱动器。在我之前的职位中,我使用自动化工具(例如适用于 Windows 服务器的 WSUS 和适用于 Linux 服务器的 YUM)实施补丁管理。无论是向您的浏览器提供网页的网络服务器、承载消息的电子邮件服务器,还是跟踪全球数千名玩家分数的游戏服务器,服务器在我们的日常数字生活中都发挥着不可或缺的作用。

2024-02-04 10:22:23 1076

原创 您应该使用哪个库?jsoniter、easyjson 还是 go-json?为什么?

JSON是一种流行的数据交换格式,广泛应用于各种平台和语言。Golang当然不会错过对JSON的支持。并且通过自己的标准库,例如Kubernetes中API Service的REST API等接口,它可以轻松处理JSON。虽然 Go 的库效果很好,但我们仍然可以在 Github 中寻找那些开源的 JSON 库,以最大限度地提高我们的效率。那么这些库的特性、性能、适用性才是我们应该考虑的。Go 中的 JSON使用 Go 的独立包操作 JSON 时有两个步骤。定义映射。

2024-02-03 16:24:21 1457 3

原创 go使用gopprof分析内存泄露

go tool pprof http://127.0.0.1:8099/debug/pprof/heap 或者直接在浏览器里输入 http://127.0.0.1:8099/debug/pprof/heap。-diff_base:提供两个 profile 文件比较,显示的百分比是基于第一个 profile 统计的数量。这里先说第一种方式,命令行很方便,假设我的服务是8099端口的一个本地服务,我就直接使用。然后运行你的服务,这样你有两种方式来获取你的堆栈申请释放信息,一种是在命令行里输入。

2024-02-03 15:44:09 1785

原创 游戏服务器缓存系统如何设计

前言不管是在业界开源领域,还是内部分享中,很少会有专门针对游戏业务特征进行专门设计的组件、类库或者框架。我们从游戏的客户端方面来看,一款专业的游戏客户端引擎,已经是游戏开发的标配,flash,Cocos,Unity,Unreal等,但是服务器端,我们几乎找不到同样重量级的产品(当然有针对海外开发者快捷开发的服务器平台,比如GAE,GameSparks,PlayFab等能满.........

2022-06-29 18:00:47 78662 8

原创 如何使用redis来实现常见的游戏排行榜

前言前面几篇文章给大家聊了下目前的常用的排行榜做法。关于游戏排行榜设计开发的一些总结游戏排行榜-跳表实现原理分析那么这篇文章将给大家带来如何使用redis来实现常见的游戏排行榜功能。为什么...

2021-08-20 09:07:04 559

原创 游戏服务器架构:如何设计开发战斗系统的技能和buff系统

战斗系统中buff和skill如何配合在网络游戏中的战斗形式多种多样,不同游戏的战斗逻辑也有很大的差异。但是一般都会涉及技能系统和buff系统,两种之间相互关联,技能可以产生buff作用在...

2021-04-10 21:01:15 1517 1

原创 geoip环境配置

1.下载geoip的php扩展库 wget http://pecl.php.net/get/geoip-1.1.1.tgz tar zxvf geoip-1.1.1.tgz cd geoip-1.1.1 phpize ./configure --with-php-config=/usr/bin/php-config --with-geoip make &make install2.配置php支持geoip扩展[ro...

2020-12-17 14:51:33 421

原创 如何抓住QQ小游戏买量红利:休闲与内购小游戏买量优化方法分享

2019年5月,Qzone小游戏、玩一玩整合升级为全新QQ小游戏平台,其以开放的社交生态和关系链,为开发者带来了巨大的流量红利。为了帮助更多开发者适应和了解新市场。本文将介绍QQ小游戏投放规模现状以及各项扶持政策,并解读轻度小游戏和重度小游戏的买量优化方法及案例,最后介绍了四项全新的投放能力,希望可以帮助开发者更加了解小游戏的生态。为方便阅读,本文主要分为以下5个要点:一、QQ小游戏投放规模现状二、三大政策扶植,鼓励开发者买量三、休闲小游戏买量优化方法四、内购小游戏买量优化方法五

2020-11-18 10:00:04 2072 4

原创 判断微信小游戏用户是否真的分享

作为开发者,传统的微信分享拿到分享的状态码并不能完全确定玩家是否分享到好友或群。因此一部分开发者给分享做一个定时器,超过5秒就判定玩家分享成功,实际上很容易被玩家利用。因此我们可以利用微信分享过程中的图片url链接做文章:1.需要一个web服务器,提供给客户端接口https://xxxx?openid=xxx&appid=xxx&channel=xxx&imgu...

2020-03-21 11:57:11 1818

原创 关于游戏架构设计的一些整理吧

在单位设计上必须冲头到尾贯彻面向对象的“继承”观念先设计基础单位A ,再在之上扩展到所有的单位,也就是说,所有的普通单位都可以追溯到一个起源的对象,否则代码量会让你想死然后就能获得所有的单位和建筑物了-----------------------------------------------------------------------地图寻

2016-02-26 15:58:38 44690 4

原创 我给游戏服务器端开发的一些建议

本文作为游戏服务器端开发的基本大纲,是游戏实践开发中的总结。第一部分专业基础,用于指导招聘和实习考核, 第二部分游戏入门,讲述游戏服务器端开发的基本要点,第三部分服务端架构,介绍架构设计中的一些基本原则。希望能帮到大家一 专业基础1.1 网络1.1.1 理解TCP/IP协议网络传输模型滑动窗口技术建立连接的三次握手与断开连接的四次握手连接建立与断开过程中的各种状态TCP/IP协

2013-01-05 22:11:18 24891 1

原创 让你不再害怕指针

让你不再害怕指针前言:复杂类型说明要了解指针,多多少少会出现一些比较复杂的类型,所以我先介绍一下如何完全理解一个复杂类型,要理解复杂类型其实很简单,一个类型里会出现很多运算符,他们也像普通的表达式一样,有优先级,其优先级和运算优先级一样,所以我总结了一下其原则:从变量名处起,根据运算符优先级结合,一步一步分析.下面让我们先从简单的类型开始慢慢分析吧:int p; //这是一个普通的整型变量

2010-11-28 15:53:00 175945 13

原创 大语言模型预训练数据采集与清洗技术实践:从语料到知识库的全流程优化

摘要: 大语言模型(LLM)的性能由数据质量、规模与多样性共同决定,但实际应用中常面临数据噪声、知识冗余及事实错误等问题。本文提出系统化数据清洗方案:预训练阶段通过多源采集(通用/领域语料)、分布式去重(SimHash)、规则与模型结合过滤低质内容,并统一文本格式;知识库阶段聚焦事实校验(权威源交叉验证)、结构化处理(实体关系抽取)及冲突仲裁(权威优先)。以金融大模型为例,验证了从数据采集到清洗的落地流程,最终实现预训练语料高质量占比95%、知识库准确率99.5%。未来趋势包括自动化清洗工具链集成与LLM自

2025-09-06 22:36:00 331

原创 解决ComfyUI从raw.githubusercontent.com下载资源超时和huggingface下载模型超时的问题

相信在当前页面的你在使用ComfyUI的过程中应该遇到了这样的问题:1.通过raw.githubusercontent.com下载模型列表超时2.通过huggingface下载模型超时并且你已经尝试过AI忽悠你尝试配置代理或者其他方式,但是仍然没有解决你的问题,那么相信这篇文章将会帮你找到答案。

2025-08-29 15:59:30 85

yolov11小麦麦穗识别数据集,9120张图片分辨率512*512 平均正确识别率可达93.8%,召回率在88.7%

yolov11小麦麦穗识别数据集,9120张图片分辨率512*512 平均正确识别率可达93.8%,召回率在88.7%

2025-08-18

chromedriver-win64-141.0.7361.0.zip

chromedriver-win64-141.0.7361.0

2025-08-18

chromedriver-win64-141.0.7360.0.zip

chromedriver-win64-141.0.7360.0

2025-08-18

chromedriver-win64-141.0.7359.0.zip

chromedriver-win64-141.0.7359.0

2025-08-18

chromedriver-win64-141.0.7357.0.zip

chromedriver-win64-141.0.7357.0

2025-08-16

chromedriver-win64-141.0.7358.0.zip

chromedriver-win64-141.0.7358.0

2025-08-16

chromedriver-win64_140.0.7303.0.zip

chromedriver-win64_140.0.7303.0

2025-08-13

chromedriver-win64_140.0.7273.0.zip

chromedriver-win64_140.0.7273.0

2025-08-13

chromedriver-win64_140.0.7295.0.zip

chromedriver-win64_140.0.7295.0

2025-08-13

chromedriver-win64_140.0.7264.0.zip

chromedriver-win64_140.0.7264.0

2025-08-13

chromedriver-win64_140.0.7337.0.zip

chromedriver-win64_140.0.7337.0

2025-08-13

chromedriver-win64_140.0.7276.0.zip

chromedriver-win64_140.0.7276.0

2025-08-13

chromedriver-win64_140.0.7317.0.zip

chromedriver-win64_140.0.7317.0

2025-08-13

chromedriver-win64_140.0.7323.0.zip

chromedriver-win64_140.0.7323.0

2025-08-13

chromedriver-win64_140.0.7311.0.zip

chromedriver-win64_140.0.7311.0

2025-08-13

chromedriver-win64_140.0.7327.6.zip

chromedriver-win64_140.0.7327.6

2025-08-13

chromedriver-win64_140.0.7259.2.zip

chromedriver-win64_140.0.7259.2

2025-08-13

chromedriver-win64_140.0.7299.0.zip

chromedriver-win64_140.0.7299.0

2025-08-13

chromedriver-win64_140.0.7312.0.zip

chromedriver-win64_140.0.7312.0

2025-08-13

chromedriver-win64_140.0.7339.5.zip

chromedriver-win64_140.0.7339.5

2025-08-13

coco json 小麦麦穗识别数据集,9120张图片分辨率512*512 平均正确识别率可达93.8%,召回率在88.7%

小麦麦穗识别数据集是一份针对小麦麦穗进行图像识别的专业数据集。该数据集总共包含了9120张图片,这些图片均具有512*512的高分辨率。它在深度学习和计算机视觉领域内具有广泛的应用。利用这个数据集,研究人员可以训练和测模型在小麦麦穗图像识别方面的性能表现。 具体来说,这套数据集被分为了三个部分:训练集(train)、验证集(valid)和测试集(test)。其中,训练集用于模型的训练过程,通过大量的样本数据使模型学会识别图像中的小麦麦穗;验证集则用于模型训练过程中的参数调优和性能评估,以检查模型在未见过的数据上的泛化能力;测试集最后用于对模型进行最终评估,以确保模型的识别效果具有一定的可靠性和稳定性。 根据描述 coco jsonl模型在使用这套数据集进行训练后,可以达到平均正确识别率93.8%,召回率在88.7%。这里的正确识别率指的是模型能够正确识别出小麦麦穗的图片占总识别图片的百分比,而召回率则反映了模型正确识别出的小麦麦穗占所有真实存在小麦麦穗图片的百分比。这两个指标共同决定了模型识别的准确性和可靠性。93.8%的正确识别率和88.7%的召回率表明该模型具有非常优秀的识别能力,对于实际应用来说,这样的性能是非常可取的。

2025-09-11

pasical voc xml 小麦麦穗识别数据集,9120张图片分辨率512*512 平均正确识别率可达93.8%,召回率在88.7%

pasical voc xml小麦麦穗识别数据集是一份针对小麦麦穗进行图像识别的专业数据集。该数据集总共包含了9120张图片,这些图片均具有512*512的高分辨率。yolov7是一种先进的目标检测算法,它在深度学习和计算机视觉领域内具有广泛的应用。利用这个数据集,研究人员可以训练和测试pasical voc xml模型在小麦麦穗图像识别方面的性能表现。 具体来说,这套数据集被分为了三个部分:训练集(train)、验证集(valid)和测试集(test)。其中,训练集用于模型的训练过程,通过大量的样本数据使模型学会识别图像中的小麦麦穗;验证集则用于模型训练过程中的参数调优和性能评估,以检查模型在未见过的数据上的泛化能力;测试集最后用于对模型进行最终评估,以确保模型的识别效果具有一定的可靠性和稳定性。 根据描述,pasical voc xml模型在使用这套数据集进行训练后,可以达到平均正确识别率93.8%,召回率在88.7%。这里的正确识别率指的是模型能够正确识别出小麦麦穗的图片占总识别图片的百分比,而召回率则反映了模型正确识别出的小麦麦穗占所有真实存在小麦麦穗图片的百分比。这两个指标共同决定了模型识别的准确性和可靠性。93.8%的正确识别率和88.7%的召回率表明该模型具有非常优秀的识别能力,对于实际应用来说,这样的性能是非常可取的。

2025-09-05

yolov7 小麦麦穗识别数据集,9120张图片分辨率512*512 平均正确识别率可达93.8%,召回率在88.7%

yolov7小麦麦穗识别数据集是一份针对小麦麦穗进行图像识别的专业数据集。该数据集总共包含了9120张图片,这些图片均具有512*512的高分辨率。yolov7是一种先进的目标检测算法,它在深度学习和计算机视觉领域内具有广泛的应用。利用这个数据集,研究人员可以训练和测试yolov7模型在小麦麦穗图像识别方面的性能表现。 具体来说,这套数据集被分为了三个部分:训练集(train)、验证集(valid)和测试集(test)。其中,训练集用于模型的训练过程,通过大量的样本数据使模型学会识别图像中的小麦麦穗;验证集则用于模型训练过程中的参数调优和性能评估,以检查模型在未见过的数据上的泛化能力;测试集最后用于对模型进行最终评估,以确保模型的识别效果具有一定的可靠性和稳定性。 根据描述,yolov7模型在使用这套数据集进行训练后,可以达到平均正确识别率93.8%,召回率在88.7%。这里的正确识别率指的是模型能够正确识别出小麦麦穗的图片占总识别图片的百分比,而召回率则反映了模型正确识别出的小麦麦穗占所有真实存在小麦麦穗图片的百分比。这两个指标共同决定了模型识别的准确性和可靠性。93.8%的正确识别率和88.7%的召回率表明该模型具有非常优秀的识别能力,对于实际应用来说,这样的性能是非常可取的。 此类数据集对于农业信息化和精准农业的发展具有重要的意义。小麦作为全球重要的粮食作物之一,实现小麦麦穗的准确识别对于作物的生长监测、病虫害预测、产量估计等方面都非常重要。高精度的自动识别技术能够大幅提高这些工作的效率和准确性,从而为农业生产和管理提供强有力的技术支持。 yolov7小麦麦穗识别数据集为我们提供了一个强大的工具,通过这套数据集训练出的模型,可以帮助我们更好地进行小麦相关研究和应用,促进农业现代化的进程。

2025-09-01

yolov5 小麦麦穗识别数据集,9120张图片分辨率512*512 平均正确识别率可达93.8%,召回率在88.7%

这套数据集被分为了三个部分:训练集(train)、验证集(valid)和测试集(test)。其中,训练集用于模型的训练过程,通过大量的样本数据使模型学会识别图像中的小麦麦穗;验证集则用于模型训练过程中的参数调优和性能评估,以检查模型在未见过的数据上的泛化能力;测试集最后用于对模型进行最终评估,以确保模型的识别效果具有一定的可靠性和稳定性。 根据描述,yolov5模型在使用这套数据集进行训练后,可以达到平均正确识别率93.8%,召回率在88.7%。这里的正确识别率指的是模型能够正确识别出小麦麦穗的图片占总识别图片的百分比,而召回率则反映了模型正确识别出的小麦麦穗占所有真实存在小麦麦穗图片的百分比。这两个指标共同决定了模型识别的准确性和可靠性。93.8%的正确识别率和88.7%的召回率表明该模型具有非常优秀的识别能力,对于实际应用来说,这样的性能是非常可取的。

2025-09-02

游戏排行榜服务器-go语言开发商业源码,支持多维度的多种方式积分排序规则

使用go语言开发的游戏排行榜服务器 使用kratos-go框架开发,etcd做服务发现,rpc调用实现排行榜积分的更新和查找等操作,缓存使用redis 支持历史最高分,对积分累加,保存最新积分等排行榜玩法 支持按时间,积分,等级等多个维度的排序规则

2025-08-27

C语言实战项目-基于STM32的四轴飞行器(遥控器代码)

C语言实战项目-基于STM32的四轴飞行器(遥控器代码)

2025-08-29

基于STM32的语音小车,小车可通过蓝牙、语音、2.4g遥控器三种方式控制,以及拥有自动避障、测速等功能

基于STM32的语音小车,小车可通过蓝牙、语音、2.4g遥控器三种方式控制,以及拥有自动避障、测速等功能

2025-08-28

AI工具在开发实践中的深度应用:从代码生成到智能调试的技术探索 从代码生成、测试、调试到质量保证的全流程技术实践与集成方案

内容概要:本文深入探讨了AI工具在软件开发各环节的应用,涵盖代码生成、智能编程、辅助测试、质量保证、调试与问题诊断、代码审查、风格检查及工具集成等方面。文章介绍了基于大语言模型的代码生成工具,如AICodeGenerator类,它能根据自然语言描述生成符合语法和规范的代码,并提供测试用例生成功能。智能代码补全工具如GitHub Copilot能提供实时上下文感知的代码建议。AI辅助测试工具AITestGenerator能自动生成全面的测试用例,而AIBugDetector和AIErrorAnalyzer分别用于智能Bug检测与错误日志分析。此外,文中还展示了AI工具在代码审查(AICodeReviewer)、格式化(AICodeFormatter)以及开发工具链和CI/CD流水线中的集成方法。最后,文章提出了使用AI工具的最佳实践,包括选择合适工具、优化提示词、确保代码质量验证,并强调了安全、质量和成本控制的重要性。 适合人群:具备一定编程基础,特别是对AI工具感兴趣的开发人员和技术管理者。 使用场景及目标:①利用AI工具加速代码编写和测试用例生成;②提高代码质量和安全性;③优化调试过程,快速定位并解决问题;④通过自动化检查和格式化提升代码一致性;⑤将AI工具集成到现有的开发环境中,如IDE插件和CI/CD流水线,以实现更高效的开发流程。 其他说明:尽管AI工具能极大提升开发效率,但它们不能完全取代人类的专业判断。开发者应将AI工具作为辅助手段,保持对代码质量的高度关注,同时持续学习新技能,适应不断发展的AI技术,从而在AI时代保持竞争力。

2025-08-27

开发者工具与效率提升:构建高效开发工作流的完整指南

内容概要:本文系统性地介绍了开发者工具与效率提升的完整实践指南,涵盖核心开发工具的选择与配置、自动化工具与脚本、开发环境管理、团队协作与工作流优化、性能监控与调试工具以及效率提升的最佳实践。详细讲解了代码编辑器(如VS Code、IntelliJ IDEA)、版本控制(Git)、包管理工具(npm、yarn、pipenv等)的使用与优化,展示了自动化脚本(Shell、Python)和构建工具(Webpack、Vite、Make)的实际应用,并深入探讨了Docker容器化开发环境、CI/CD流水线(GitHub Actions)、代码审查流程、日志管理与性能分析等高级主题。; 适合人群:具备一定编程基础,从事软件开发1-3年的工程师,尤其是希望提升开发效率、构建标准化工作流的前端、后端及全栈开发者;也适合技术团队负责人参考以优化团队协作流程。; 使用场景及目标:①帮助开发者合理选择和深度配置开发工具,提升个人编码效率;②通过自动化脚本和CI/CD实现项目构建、测试、部署的全流程自动化;③建立统一的团队开发规范,提升协作质量与交付速度;④掌握性能监控与调试技巧,保障系统稳定性。; 阅读建议:建议结合实际项目边学边练,重点实践编辑器配置、Git工作流、自动化脚本编写和CI/CD集成等内容,同时可将文中的模板(如PR模板、Dockerfile、日志中间件)直接应用于生产环境,持续迭代优化自身开发工作流。

2025-08-27

yolov8 小麦麦穗识别数据集,9120张图片分辨率512*512 平均正确识别率可达93.8%,召回率在88.7%

yolov8 小麦麦穗识别数据集,9120张图片分辨率512*512 平均正确识别率可达93.8%,召回率在88.7%

2025-08-22

chromedriver-win64-141.0.7366.0.zip

chromedriver-win64-141.0.7366.0

2025-08-22

chromedriver-win64-141.0.7367.0.zip

chromedriver-win64-141.0.7367.0

2025-08-22

chromedriver-win64-141.0.7364.0.zip

chromedriver-win64-141.0.7364.0

2025-08-22

chromedriver-win64-141.0.7368.0.zip

chromedriver-win64-141.0.7368.0

2025-08-22

chromedriver-win64-141.0.7365.0.zip

chromedriver-win64-141.0.7365.0

2025-08-22

chromedriver-win64-141.0.7363.0.zip

chromedriver-win64-141.0.7363.0

2025-08-22

如何快速设计和开发百万级游戏排行榜(文中包含og语言开发的基于微服务架构的源码)

如何快速设计和开发百万级游戏排行榜,详细设计来自文章: https://backend.blog.csdn.net/article/details/150518926?spm=1011.2415.3001.5331

2025-08-19

基于groupCache的分布式缓存的玩家简要信息存储工程-go语言

基于groupCache的分布式缓存的玩家简要信息存储工程--go语言

2025-08-19

chromedriver-win64-141.0.7362.0.zip

chromedriver-win64 141.0.7362.0

2025-08-19

yolov9 小麦麦穗识别数据集,9120张图片分辨率512*512 平均正确识别率可达93.8%,召回率在88.7%

yolov9小麦麦穗识别数据集,9120张图片分辨率512*512 平均正确识别率可达93.8%,召回率在88.7%

2025-08-18

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除