目录
概要
大型语言模型 (LLM) 彻底改变了人工智能,使其能够在各种自然语言处理 (NLP) 任务中实现最先进的性能。然而,其巨大的规模对计算效率、适应性和部署可行性提出了挑战。两种主要技术——微调和提炼(蒸馏)——已成为关键的优化策略。微调,尤其是像QLoRA这样的参数高效形式,有助于领域适应,同时减轻计算开销。相比之下,提炼将大型教师模型压缩为更小、更高效的学生模型,从而优化推理速度和资源使用率。
虽然传统上将微调和提炼视为独立的方法,但最近的进展表明,结合微调和
目录
大型语言模型 (LLM) 彻底改变了人工智能,使其能够在各种自然语言处理 (NLP) 任务中实现最先进的性能。然而,其巨大的规模对计算效率、适应性和部署可行性提出了挑战。两种主要技术——微调和提炼(蒸馏)——已成为关键的优化策略。微调,尤其是像QLoRA这样的参数高效形式,有助于领域适应,同时减轻计算开销。相比之下,提炼将大型教师模型压缩为更小、更高效的学生模型,从而优化推理速度和资源使用率。
虽然传统上将微调和提炼视为独立的方法,但最近的进展表明,结合微调和