大型语言模型中微调和提炼的详细技术比较

目录

概要

介绍

技术背景

微调和参数高效策略

模型提炼

理念的冲突

QLoRA:将量化与低秩自适应相结合

高级量化:不破坏的缩小艺术

4 位量化为何有效

低阶适配器集成:效率的艺术

低秩适应为何有效

QLoRA 为何如此重要:宏观视角

提炼:机制与训练动态

学生永远无法超越老师——可以吗?

训练动态:从阴影中学习

大型数据集的作用

优化挑战:双重损失的双刃剑

蒸馏:必要的权衡?

比较分析:微调与提炼

记忆与计算效率:智能的代价

性能与准确性:情报的完整性

训练动力与稳定性:平衡复杂性的艺术

优先事项问题

混合方法和最佳实践

数据和损失函数策略:精准学习的科学

自适应架构配置:为正确的任务设计正确的模型

动态合并的作用

集成训练流程:循环学习的模型

为什么这在现实世界中很重要

人工智能的未来在于智能效率

结论和未来方向


概要

大型语言模型 (LLM) 彻底改变了人工智能,使其能够在各种自然语言处理 (NLP) 任务中实现最先进的性能。然而,其巨大的规模对计算效率、适应性和部署可行性提出了挑战。两种主要技术——微调和提炼(蒸馏)——已成为关键的优化策略。微调,尤其是像QLoRA这样的参数高效形式,有助于领域适应,同时减轻计算开销。相比之下,提炼将大型教师模型压缩为更小、更高效的学生模型,从而优化推理速度和资源使用率。

虽然传统上将微调和提炼视为独立的方法,但最近的进展表明,结合微调和

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值