代码数字孪生:回归软件的复杂系统属性

企业软件开发很多时候面临的都是维护型任务。此前有企业专家在跟我交流时说:“我们有两类开发任务,一类是添加新代码,另一类是维护已有代码”。但我说,即使是添加新代码那基本上也是维护型任务,因为这些新代码往往不是写在一个空白的地方,而是在一个既有的软件架构中确定几个位置进行代码添加和修改,同时还要通过变更影响分析和回归测试等技术避免潜在的副作用

在此前的几篇文章,特别是《迈向更高层次智能化开发之路:写给大模型的2023总结》《大模型时代的软件智能化开发:我们在哪里?该往何处走?》之中,我多次论述过大模型在软件维护任务上的根本性不足并倡导“代码数字孪生”的思想。企业软件开发中的维护型任务的一个主要问题在于知识的缺失。代码数字孪生试图以一种与代码双向映射、协同演化的方式抽取、积累并持续更新关于代码的高层知识。同时,我还进一步强调,可以将软件知识积累上升到一个更高的高度:软件将成为支撑我们社会经济生活方方面面的新型基础设施同时其规模和复杂度不断提高,逐渐成为一种巨复杂系统,因此关于这些软件的知识积累和沉淀将成为我们人类文明记录的一部分

引言:回归软件的复杂系统属性

在当下以大模型为代表的AI技术突飞猛进的背景下,各种软件开发范式变革以及生成式AI终结编程的言论不绝于耳。在这种喧嚣之中,企业管理者可能会盲目憧憬AI带来的“十倍研发效率提升”,从而对软件开发团队有不切实际的期望,并在大模型训练微调或工具采购等方面大量投资之后归于失望,而对本应长期投入建设的软件研发流水线及其数字化底座和知识化积累视而不见。正如我此前文章中所表达的观点,当前的主流研究路线(包括工业界)过于热衷于大模型和Agent等AI技术的“眼球效应”,在软件工程的本质困难上的思考不多

围绕“代码数字孪生”这一概念,我也一直在思考一个问题,那就是为什么我们不能期望大模型兼收并蓄,把各种特定领域开发知识照单全收,同时利用越来越大的上下文输入窗口接受大量甚至全量的项目代码,从而一劳永逸地解决各种软件维护型开发任务?此前我也做过这方面的论述,即代码数据所提供的信息是平面化的(缺少软件抽象),仅反映最终结果(缺少决策过程),不足以支撑大模型获得更高层次上的智能化开发能力,设计能力的缺失是一个关键因素。这里结合近期我的一些思考再次论述下这个问题,其中的核心观点是我们要正视并高度重视软件的复杂系统属性及其独特性,并以此为基础思考我们的智能化开发技术路线

首先来看主流的人工智能路线的观点,我将其称为“大模型一锅炖”,即所有知识,包括特定领域知识,都以“语料”的方式在不同阶段(如预训练及各种微调)“喂”给大模型,最终通过大模型融合和释放各种软件知识。这种观点的背后是将软件视为一种特殊的文本token的组合,由此将软件开发的智能化视为各种共性模式(如常用算法、设计模式、API使用模式以及各种特定领域的模式化代码)的学习和利用。所谓的“天下代码一大抄”,软件无非是各种共性模式的组合而已,因此可以通过大模型学习从通用到特定领域各个不同层次上的共性模式并灵活运用。

那么我们的复杂系统观点的依据又是什么呢?首先,让我们先来一段形象思维:软件就像是一台精密的仪器设备,打开外壳后可以看到里面各个不同的零部件(如各种不同粒度的软件组件或模块)相互咬合联动,形成一个完整的系统。事实上,软件的复杂性比很多机器设备还要高很多:机器设备的零部件有着清晰的边界和明确的接口联动关系,有着清晰、完整、明确的整体设计方案(例如通过各种图纸体现)且与实际的机器设备完全一致;而软件中的各种模块组件粘连严重,各种看得见看不见的相互作用犹如一团乱麻没人理得清,至于清晰、完整、明确、与代码完全一致的整体设计方案那更是天方夜谭。

这种系统复杂性主要是由软件的根本特性造成的:

1. 首先,软件是一种不可见的逻辑产品,是人类各种思维(例如业务关注点以及设计思路)相互交织混杂后的一种表达形式,因此内部组件/模块边界模糊、交互关系复杂难测,但同时软件又具有高度的精密性(高度符号化,错一点可能全错);

2. 其次,软件作为一种现实世界问题的解决方案本身处于一个复杂的系统上下文环境中(例如硬件、网络、基础软件等方面的运行环境以及用户使用场景等方面的业务环境),由此导致理解及编写代码的一部分重要背景知识并不在代码本身而在代码之外;

3. 再次,软件具有很高的内部复杂性,大规模复杂企业软件包含很多模块和组件,同时关注点的“混杂”与“散布”现象十分突出,导致高层问题(如一个issue单)与底层代码之间的映射关系极其隐晦、复杂;

4. 最后,软件常常处于持续的演化之中,大量的开发人员参与其中且各自为战、缺少统一协调,导致软件呈现一种生态系统版的适应性演化过程从而逐渐形成突出的系统独特性。

关于最后一点我最近思考比较多,这里再展开阐述一下。软件的复杂性不仅体现在快照式的单个软件版本上的系统复杂性,而且还体现在长期持续演化过程所造成的生态复杂性。如何理解呢?先来看看理想化的软件开发过程:明确的软件需求,精心的总体设计,严格的代码实现(所谓“按图纸施工”)。这不正是经典的“瀑布模型”所倡导的吗?因为软件工程所学习的建筑和桥梁工程等传统的工程领域就是这样做的。大家都知道实际的企业软件开发很少能按照这个理想模式来进行,流行的是敏捷开发和DevOps这些崇尚快速迭代的开发方法,因为需求总是高度不确定并且随着时间的推移不断变化。由此造成软件的规模和复杂性不断增长。例如,Linux内核代码在过去20多年增长了10倍,现在已经超过3000万行。不仅是这种大单体系统,互联网公司的各种基于微服务架构的线上系统同样也在不断膨胀,成为一种难以掌握的复杂巨系统。

这里想强调的生态复杂性还不仅仅是规模问题,而且还包括软件演化过程中的适应性生长问题。理想状态下,即使是迭代化的软件开发过程也应该有着良好的整体设计来指导各个部分的具体维护工作。然而事实如何呢?业界专家的形象刻画是“世界是一个巨大的草台班子”、“狗皮膏药似的一层又一层贴上去”。其具体含义是,大量的代码修改都是在当时当地的现实约束下(如特性上线时间、资源约束以及可靠性影响最小化等),由一些仅具有局部视野(不了解或者也不愿意去了解更大范围内的系统设计)和有限责任心(或者在上线时间等现实压力下的无奈屈服)的软件工程师来实施的。此外,我们在分析Linux内核等巨复杂系统的开发历史时经常能看到各种复杂的深层考虑,例如为了解决一个系统特定的性能问题而采用一些不那么显而易见的设计决策。由此带来的结果是,企业级开发所面对的软件系统并不是一个从一开始就精心设计好的、符合共性模式和良好设计原则的标准化系统,而是经过长期适应性演化以及各种复杂权衡决策所产生的结果。由此还会积累大量的技术债(死代码、重复代码、非必要的耦合等问题比比皆是),并形成一个难以理解和维护的遗留系统(业界经常用“屎山代码”这样不雅的比喻),即使是业界闻名的成功产品背后也是如此。因此,软件经过长期演化之后将体现出越来越强的系统独特性,各种软件维护任务都需要在回顾历史、厘清软件发展变化的来龙去脉的基础上才能理解所面临的软件开发问题并作出问题定位、修改决策、变更影响分析、架构看护等方面的决策

由此,我们认为“大模型一锅炖”这样的技术路线可能难以较好地支持复杂企业软件开发任务。复杂软件的理解与分析(如问题定位、修改决策、变更影响分析)需要“系统2 ”的结构化分析思维(慢速、需要努力、消耗认知资源的分析性思维)。支持这种理解与分析的关键是软件开发及演化知识的持续沉淀与积累。同时,这种知识需要以一种结构化的方式进行表示(例如知识图谱及其他表示方法),并以一种可见、可理解的方式支持开发人员以众包式的方式持续参与知识贡献与积累

为此,我们倡导将代码数字孪生定义为一种AI时代的软件知识工程方法并将其作为支撑复杂软件系统演化的关键基石。那么为什么将其称为一种“数字孪生”呢?我们一般所谈论的“数字孪生”都是针对物理世界,大到城市小到发动机,其基本出发点是将物理世界数字化和可视化,从而实现运行监控、模拟仿真、辅助决策等方面的目标。而我们这里谈论的软件本身就是数字化的,为什么还需要数字孪生呢?这里,我们的理解是,代码层面的目录/包、文件/类、函数/方法及其关系只是软件的物理表示,软件的逻辑表示是高层的需求和设计知识,我们希望通过代码数字孪生抽取和沉淀关于软件高层知识并建立其与代码实现之间的映射关系。进一步,对于以云原生软件为代表的在线系统,其部署和运维过程还进一步融入系统演化过程及其复杂性之中,因此我们需要进一步考虑软件系统数字孪生。也就是说,对于一个云上部署并持续运行的在线系统,除了代码实现之外,其部署和运行环境本身及其持续更新(如环境配置修改、在线版本更新)也成为数字孪生所关注和捕捉的对象。而对于Linux内核这种复杂的大单体软件系统而言,我们可以主要关注于与代码实现相关的高层逻辑构思及其演化过程,即代码数字孪生。

近期,我们撰写了一篇观点论文《Code Digital Twin: Empowering LLMs with Tacit Knowledge for Complex Software Maintenance》(点击“阅读原文”链接可下载全文)。同时我们还将在即将于6月底在挪威举行的FSE 2025“Software Engineering in 2030”研讨会上进行汇报交流。下面介绍下这篇文章的主要内容。

代码数字孪生:方法与挑战

1.复杂软件系统的独特性与大模型泛化能力的鸿沟

软件系统的多维复杂性

近年来,大语言模型(LLMs, 如 GPT-4、Claude、Gemini等)在软件工程任务中展现出显著的性能跃升,涵盖代码生成、自动补全、错误定位、文档生成等子任务。得益于大规模预训练语料和强大的上下文理解能力,它们已广泛应用于开发过程中的人机协作。然而,这些成功主要集中于“具象且通用”的开发任务,例如针对特定API的调用建议、通用算法实现等。

然而,真实世界中的软件系统远非如此理想。复杂软件通常具备以下几个关键特征:

  1. 系统规模宏大:拥有百万级代码行、千级模块与多层次依赖;

  2. 演化历史悠久:软件生命周期跨度长,设计逻辑随时间层层叠加;

  3. 隐性知识浓缩:设计决策、架构意图及性能权衡往往未形成明确文档;

  4. 语义耦合紧密:多个子系统功能协同、接口深度绑定;

  5. 多方协作异构:来自不同组织与背景的开发者共同参与开发与维护。

这些特性导致复杂软件具备高度“系统独特性”(System Specificity),即系统的结构与行为在很大程度上由其历史演化路径决定,无法被外部的通用经验或训练数据简单覆盖。这种独特性源于多层次决策历史的累积效应:从架构风格选择、模块边界划分,到接口演进与性能调优,每一层的微小选择都影响着最终系统行为。

大模型虽具备强大的泛化能力,但面向复杂系统时往往缺乏系统级抽象建模能力演化上下文感知能力。其理解粒度局限于函数级别或文件级别,对于跨模块依赖、系统语义变迁、历史设计权衡等内容掌握不足。

案例:Linux 内核的复杂性

以Linux内核为例,其作为一个典型的复杂开源系统,不仅规模庞大、子系统众多,其开发流程亦高度社会化。仅2021年,Linux 内核便有超24万名开发者贡献了逾100万次提交,涉及设备驱动、调度器、文件系统等多个关键子系统。其架构决策与功能演进常伴随复杂的社区讨论与长周期协商。这种深层设计逻辑主要存在于如下资源中:

  • 邮件列表与内核讨论(如Linux内核邮件列表LKML);

  • patch提交记录与合并策略;

  • RFC提案及其演化版本;

  • 非正式的个人维护者笔记、技术博客等。

面向未来的软件知识建模需求

这些资源语义丰富、格式松散、上下文复杂,远超当前大模型“静态上下文补全”的能力边界。因此,大模型在复杂系统支持中暴露出几个根本性问题:

  • 缺乏系统级上下文感知与因果建模能力;

  • 难以掌握关键设计原则与权衡逻辑;

  • 无法持久积累系统特定的演化知识与结构认知;

  • 难以自动适应系统持续变更与迭代。

为此,我们迫切需要构建一种新型知识工程框架,作为大模型与复杂软件系统之间的“认知中介”,提供语义、结构与演化三位一体的知识支持。这一需求正是代码数字孪生(Code Digital Twin)所要解决的核心挑战。

2.代码数字孪生:捕捉复杂软件系统中的暗知识

概念引入与理论基础

代码数字孪生是一个以知识建模为核心的框架,旨在为每一个复杂软件系统构建一个随演化协同更新的知识表示。它不仅映射了系统当前的静态结构,更抽象了其功能逻辑、架构理念与历史决策,从而实现对系统独特性的深度建模与推理支持。

知识维度建模

代码数字孪生将系统知识分为三大结构层次:

  • 骨架知识(Artifact-Oriented Backbone)映射代码元素与功能之间的语义结构,构建系统功能的抽象视图。它回答“系统做什么”、“怎么做”的问题;

  • 解释性知识(Rationale-Centric Explanations)捕捉架构与设计层的隐性决策与原理,强调为什么采用某种结构、为何变更某模块等“why”的问题;

  • 映射关系与协同演化(Artifact-Knowledge Reflection & Co-Evolution)将上述知识与代码、文档、issue等实际制品精确对齐,支持演化过程中的一致性维护与动态更新。

建模方法论

代码数字孪生采用混合式知识表示策略

  • 结构化表示:如知识图谱(KG)、本体(Ontology)、层级框架(Taxonomy)等,用于建模领域概念、功能及其关系;

  • 非结构化表示:利用自然语言文本片段、对话记录等,捕捉开发者意图与系统行为背后的非正式知识;

  • 协同表示:二者融合,利用统一标识符(如 FunctionID, DesignRationaleID)跨越结构与非结构知识边界,实现知识整合与统一查询。

构建流水线(Pipeline)

代码数字孪生构建过程包括如下三个主要阶段。

  • 面向制品的骨架知识提取:我们将自顶向下与自底向上的知识抽取相结合。其中,自顶向下的知识抽取基于文档与专家知识,利用大模型解析功能说明、概念结构并形成模式化表示。自底向上的知识抽取借助代码分析与大模型能力,从函数、类、模块、调用链等构建系统的功能抽象。

  • 设计原理与决策知识抽取:我们需要针对各种非结构化资源(如邮件列表、issue tracker、pull request 讨论等)使用模板驱动的LLM抽取设计动因。同时,我们还需要构建解释性知识框架(如“模块替换原因-性能指标变化-上下文依赖”三元组)。

  • 知识—制品映射构建:使用 LLM+规则的混合方法将骨架与解释性知识关联至代码节点,同时建立跨语义层次(例如模块、接口、业务逻辑)的多粒度索引。

该流程支持持续协同演化,可通过增量学习与差异检测机制实现与主干开发过程(如 Git flow)的实时耦合。

3.AI驱动的软件开发与演化新范式

代码数字孪生赋能LLM的三种核心交互范式。

  • 按需知识问答(On-Demand Q&A):基于系统当前结构与演化历史,回答开发者提出的查询(如“此模块为何弃用”、“该特性与哪些接口耦合”)。还可以提供语义高亮、因果路径可视化等辅助分析工具。

  • 上下文感知开发协同(Context-Aware Co-Pilot):在开发中主动推荐功能结构、接口语义、历史变更影响,支持智能补全与代码审查。还可以利用代码数字孪生提供的知识上下文增强大模型提示工程效果,提升代码生成和分析质量。

  • 自主演化智能体(Autonomous Auto-Pilot):基于数字孪生构建任务-系统对齐视图,驱动多轮规划、重构、测试生成等。在保证可解释性和可验证性的前提下,实现软件系统的自我调整与智能演进。

4.未来研究路线与关键挑战

协同知识建模

如何开发多源知识对齐机制,融合结构化知识图谱与非结构化语料;如何构建语义约束模型,支持知识的不确定性表达与版本演化;如何探索图神经网络与逻辑推理的结合,用于构建可学习的知识引擎。

自动化流水线与可扩展构建

如何利用强化学习优化多阶段抽取流程,提升抽取-建模链路效率;如何研究异步增量更新算法,适应持续集成中的频繁演化;如何引入主动学习机制,实现模型对知识盲点的识别与反馈。

人机协同与专家知识融合

如何构建交互式知识采集平台,提升专家参与意愿;引入信任机制与元数据溯源技术,提升贡献内容的可验证性与可复用性;如何构建知识质量评价体系,支持系统级指标反馈。

与大语言模型深度融合

如何构建结构感知提示框架(structure-aware prompting),增强 LLM 对系统性知识的响应能力;如何构建统一语义接口,支持代码数字孪生与 LLM 之间的互操作;如何探索知识驱动的可控生成(knowledge-constrained generation)策略,用于提升 LLM 在关键任务中的稳定性与可靠性。

5.结语

代码数字孪生不仅是一种知识组织方式,更代表了一种新的软件工程范式:以知识为中介,以演化为核心,融合人工智能与人类智慧协同推动复杂软件系统的智能开发、精准维护与可持续演进。

作者简介

彭鑫,复旦大学计算与智能创新学院副院长、教授。中国计算机学会(CCF)杰出会员、软件工程专委会副主任、开源发展委员会常务委员。中国汽车工程学会汽车基础软件分会副主任。

王翀,2023年获得复旦大学博士学位,现于南洋理工大学任博士后研究员,研究方向为智能化软件工程。

欢迎关注我们

CodeWisom

一个有知识的软工公众号

发现智能化编程之道

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值