损失函数MSE,MAE,Huber Loss的敏感度

MSE”指的是均方误差(Mean Squared Error)

很简单,中学学过的。因为加了平方,所以可以放大误差,它对异常值特别敏感。如果需要更大凸出敏感,可以搞3次方的。

一、哪些场景需要强调极端异常值?

1. 金融欺诈检测 / 风控

  • 极端值 = 高金额的欺诈交易或信用风险

  • 即使整体模型准确率高,但漏掉一个大额欺诈,成本极高。

  • 所以需要模型对“离群行为”敏感,不能忽略。

2. 工业预测 / 故障预警

  • 在设备预测寿命、故障监控中,极小概率的大误差(比如温度异常升高)可能意味着设备即将故障。

  • 模型必须优先捕捉这类异常,否则后果严重。

3. 医疗诊断

  • 极端误差可能意味着误诊(例如,预测病情过于轻微),可能导致延误治疗。

  • 所以要特别惩罚“偏差过大的预测”。

4. 航天 / 安全领域

  • 在航天飞行、核电站控制等领域,预测的误差如果在关键点上极大,可能造成灾难性后果。

  • 即使 99% 情况都预测得好,那 1% 的大误差必须被重点抑制

二、哪些任务不需要对异常值敏感?

1. 用户行为建模 / 推荐系统

  • 目标是优化大多数用户的体验,而不是被极端用户行为扰乱。

  • 一两个异常用户看了几百条商品,不代表整体趋势。

👉 使用 MAE(平均绝对误差)或 Huber Loss,更鲁棒。


2. 图像生成 / 风格迁移 / GAN

  • 视觉模型追求“平均视觉质量”而非精确像素还原。

  • 少量极端像素误差(亮点、瑕疵)无关紧要。

👉 MSE 会过度惩罚图像中的少量亮点,导致生成图像模糊;因此常用感知损失(Perceptual Loss)或 MAE。


3. 语言模型 / 文本生成

  • 偏离词汇或语义的少数 token 并非“异常”,可能是创造性。

  • 极端值在语言中往往不是错误,而是风格。

👉 追求“总体句子质量”更重要,不应惩罚个别不常见的词。


4. 数据中本身含有自然离群点

  • 比如房价预测中,个别千万豪宅不代表整体规律。

  • 如果模型对这些值太敏感,会导致整体偏差。

👉 更倾向用 MAE 或 log 变换目标变量。

MAE是啥呢,就是不加平方呗,老外尽整这些唬人缩略词

Huber Loss比较流氓,把2个结合了一下。小的误差用MSE,大的误差用MAE。

结合多个函数或模型的思想属于 混合方法(Hybrid Methods)组合优化(Combinatorial Optimization) 的范畴。缺点是手动设置阈值。

他们三个都用于回归任务,回归就是预测连续的值,比如股票未来的值。回归这个词是来源于统计学,趋向的意思,回到真实

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值