- 博客(7)
- 收藏
- 关注
原创 Open Images V4 下载自己需要的类别(数据集获取)
注释文件如下:Class Names: class-descriptions-boxable.csv 数据集内部使用的类名到人类可理解名称的对应Boxes: train-annotations-bbox.csv 训练图像中对象实例的边框注释 validation-annotations-bbox.csv 验证图像中对象实例的边框注释 test-annotati...
2021-07-10 17:47:54
4417
转载 2021-06-30
目标检测网络构成部分:detector=backbone + neck + headbackbone部分的网络就是负责从图像中提取特征。neck是放在backbone和head之间的,是为了更好的利用backbone提取的特征。head这一部分的作用就是用于分类+定位。backbone:VGGResNet (ResNet18, 50, 100)ResNextDenseNetSqueezeNetDarknet (Darknet19,53)MobileNetShuffleNe
2021-06-30 13:09:52
3299
原创 Google Open Images Dataset V4
类别名称: (打算用这里面的图片自制一个数据集,包含几个类别)/m/011k07 Tortoise /m/011q46kg Container /m/012074 Magpie /m/0120dh Sea turtle /m/01226z Football /m/012n7d Ambulance /m/012w5l Ladder /m/012xff Toothbrush /m/012ysf Syringe /m..
2021-06-27 16:24:52
4843
原创 [email protected]与[email protected]:0.95的含义,YOLO
[email protected]:mean Average Precision(IoU=0.5)即将IoU设为0.5时,计算每一类的所有图片的AP,然后所有类别求平均,即mAP如图所示,AP50,AP60,AP70……等等指的是取detector的IoU阈值大于0.5,大于0.6,大于0.7……等等。数值越高,即阈值越大,精度越低。[email protected]:.95(mAP@[.5:.95])表示在不同IoU阈值(从0.5到0.95,步长0.05)(0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.
2021-06-02 19:41:20
35747
5
原创 tensorboard可视化查看events.out.tfevents文件
命令行tensorboard --logdir=event-dir(event保存路径)
2021-06-02 18:55:20
9662
4
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人