Leetcode 380 Insert Delete GetRandom O(1)

本文介绍了一个支持插入、删除和随机返回元素操作的数据结构实现,并确保这些操作的平均时间复杂度为O(1)。通过结合使用ArrayList和HashMap来高效地完成所需功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Design a data structure that supports all following operations in average O(1) time.

  1. insert(val): Inserts an item val to the set if not already present.
  2. remove(val): Removes an item val from the set if present.
  3. getRandom: Returns a random element from current set of elements. Each element must have the same probability of being returned.

Example:

// Init an empty set.
RandomizedSet randomSet = new RandomizedSet();

// Inserts 1 to the set. Returns true as 1 was inserted successfully.
randomSet.insert(1);

// Returns false as 2 does not exist in the set.
randomSet.remove(2);

// Inserts 2 to the set, returns true. Set now contains [1,2].
randomSet.insert(2);

// getRandom should return either 1 or 2 randomly.
randomSet.getRandom();

// Removes 1 from the set, returns true. Set now contains [2].
randomSet.remove(1);

// 2 was already in the set, so return false.
randomSet.insert(2);

// Since 2 is the only number in the set, getRandom always return 2.
randomSet.getRandom();
参考
public class RandomizedSet {
    ArrayList<Integer> nums;
    HashMap<Integer, Integer> locs;
    java.util.Random rand = new java.util.Random();
    /** Initialize your data structure here. */
    public RandomizedSet() {
        nums = new ArrayList<Integer>();//nums用来存所有的数
        locs = new HashMap<Integer, Integer>();//用来存储数和对应在num里面的位置 可以存在 duplicate
    }
    
    /** Inserts a value to the set. Returns true if the set did not already contain the specified element. */
    public boolean insert(int val) {
        boolean contain = locs.containsKey(val);
        if ( contain ) return false;
        locs.put( val, nums.size());
        nums.add(val);
        return true;
    }
    
    /** Removes a value from the set. Returns true if the set contained the specified element. */
    public boolean remove(int val) {
        boolean contain = locs.containsKey(val);
        if ( ! contain ) return false;
        int loc = locs.get(val);
        if (loc < nums.size() - 1 ) { // not the last one than swap the last one with this val
            int lastone = nums.get(nums.size() - 1 );
            nums.set( loc , lastone );
            locs.put(lastone, loc);
        }
        locs.remove(val);
        nums.remove(nums.size() - 1);
        return true;
    }
    
    /** Get a random element from the set. */
    public int getRandom() {
        return nums.get( rand.nextInt(nums.size()) );
    }
}




内容概要:本文提出了一种融合多尺度Wavelet模型的跨文化英语交际智能模型系统(FL-DP-Wavelet),旨在通过多模态数据融合、多尺度特征提取与跨文化适应性建模,提升智能系统的文化敏感性和语境理解能力。该模型通过结合小波变换与深度学习优化语言信号的时频特征提取,基于跨文化敏感性发展模型(DMIS)构建文化适应性评估模块,并设计多模态数据融合框架,增强跨文化场景下的语义解析鲁棒性。实验结果显示,系统在跨文化语境下的语义理解准确率提升12.7%,文化适应性评分优于基线模型15.3%。 适合人群:从事跨文化交流、国际商务、外语教育的研究人员和技术开发者,特别是对智能系统在跨文化场景中的应用感兴趣的学者和工程师。 使用场景及目标:①跨文化商务谈判、教育合作和公共外交等场景中,需要提升智能系统的文化敏感性和语境理解能力;②帮助系统实现实时文化适应,减少因文化差异引起的语义误判和非语言行为冲突;③通过多模态数据融合,增强智能系统在复杂跨文化环境中的语义解析能力。 其他说明:该研究不仅提出了新的理论框架和技术路径,还在实际应用中验证了其有效性和优越性。未来将聚焦于小波-Transformer耦合、联邦学习隐私保护和在线学习算法,进一步推动系统向自主文化融合演进。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值