[吴恩达 机器学习]第十章 神经网络参数的反向传播算法

代价函数

二分类和多分类

下图的谁他0没有参与正则化
代价函数

反向传播算法

计算过程

实例

为了计算结果项采用前向传播算法?
前向传播计算
为了计算倒数项采用反向传播算法(右侧为向量表示)
反向传播计算

  • 先用前向传播算法
  • 再用后向传播算法
    整个计算过程

理解反向传播

反向传播与前向传播计算过程类似
前向传播计算过程
反向传播计算过程
75 使用注意:展开参数
从矩阵展开成向量
在这里插入图片描述
应用于算法:
在这里插入图片描述

76 梯度检测

单侧差分vs双侧差分
在这里插入图片描述
求偏导数的方法
数值计算方法
梯度检测计算量极大,反向传播计算Dvec的方法是一个高性能的计算导数的方法,一旦通过检测确定反向传播计算导数是正确的就要在训练时要关掉梯度检测】
在这里插入图片描述

  • 数值上计算梯度的方法
  • 如何去验证反向传播算法实现是否正确

77 随机初始化Random initialization

设置TheTa的初始值

  1. 全部置为0,但是起不到任何效果:所有的隐藏层都以相同的函数作为输入
    ,这是一种高度冗余的,只能得到一个特征?,神经网络学习不到有趣的东西(对称权重问题)
    在这里插入图片描述
    2.随机初始化是解决这类对称问题的方法
    在这里插入图片描述

78组合到一起

目的:

  • 相关知识之间有什么联系
  • 神经网络算法的总体实现过程
  1. 选择网络架构(分类结果要写成向量形式)
    输入和输出层选择原则
    隐藏层选择原则:一般选择单个隐藏层,隐藏单元越多越好,但越多计算量越大,隐藏单元数量最好是输入单元的倍数
  2. 神经网络的实现步骤
    在这里插入图片描述

在这里插入图片描述
神经网络是非凸函数,最后获取的可能是局部最优值
在这里插入图片描述

80 无人驾驶

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值