百度飞桨目标检测教程四:Anchor-Free算法

本文深入探讨了Anchor-Free目标检测算法,包括CornerNet、CornerNet Lite、FCOS和CenterNet等。分析了这类算法的优势和挑战,如解决正负样本不平衡问题,以及在检测精度和速度上的表现。此外,还介绍了TTFNet对 Anchor-Free 方法的改进,通过增加监督信息和调整损失函数来提升性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

百度飞桨目标检测教程四:Anchor-Free算法

Anchor-Free 算法解析

Anchor-Free 也可以细分为两种策略

第一种keypoint-based 涉及论文:CornerNet CornerNet Lite

第一种center-based 涉及论文:FCOS CenterNet TTFNet

Overall

经典算法的总结与展示

ppt1

思考?

anchorfree1

anchor-based的方法的本质?不管使用什么方法,都是在每一个像素点生成一系列的anchor,然后判断这些anchor是positive还是negative,然后再对anchor中的内容做分类和回归。

anchor-based的方法的优势?一定程度上解决目标尺度不一和遮挡的问题。举个例子来说,如果两个目标的中心靠的很近的话,经过很多层卷积,它们的中心就会映射到一个网格上面,这事必须使用多尺度的一个anchor系列才能把这两个物体都检测出来。

anchor-based的方法的弊端?①依赖过多的手工设计:需要手工设计很多超参数,比如anchor的大小和比例;②训练和预测过程低效:anchor的数量太多了,需要一个一个遍历与真实框进行比较,这样需要的计算力是很大的;③正负样本不平衡:还是说anchor的数量太多,只有很小的一部分anchor是positive的,大部分是negative,这就是正负样本的不平衡。

ppt2

如何表示检测框

anchor-based的方法?用预设的anchor信息+编码出来的信息(偏移量bx, by, bw, bh

anchorfree2

anchor-free中的keypoint-based方法?首先检测出目标的左上角点和右下角点,然后通过它们之间的组合获取检测框。代表算法cornernet系列

anchor-free中的center-based方法?直接检测物体中心区域和边界信息,然后将分类和回归解耦成两个子网络。代表网络centernet系列,FCOS系列

CornerNet

ppt1
CornerNet

Cornernet: Detecting

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值