深度学习中的inductive bias解释

本文介绍了机器学习中的一个重要概念——归纳偏好(inductive bias),即算法在学习过程中的假设偏好。归纳偏好反映了人类对世界的先验知识,并通过不同算法的具体实现展现出来。文章列举了线性回归、感知器、神经网络等常见算法的归纳偏好。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器学习算法在学习过程中对某种假设(hypothesis)的偏好,称为“归纳偏好”(inductive bias),或简称为“偏好”。

所谓的inductive bias,指的是人类对世界的先验知识,对应在网络中就是网络结构。

下面是一些inductive bias的例子:

Algorithm | Inductive Bias

Linear Regression | The relationship between the attributes x and the output y is linear. The goal is to minimize the sum of squared errors.

Single-Unit Perceptron | Each input votes independently toward the final classification (interactions between inputs are not possible).

Neural Networks with Backpropagation | Smooth interpolation between data points.

K-Nearest Neighbors | The classification of an instance x will be most similar to the classification of other instances that are nearby in Euclidean distance.

Support Vector Machines | Distinct classes tend to be separated by wide margins.

Naive Bayes | Each input depends only on the output class or label; the inputs are independent from each other.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值