视觉SLAM十四讲-第十一讲笔记

本文详细介绍了视觉SLAM中位姿图优化的方法,包括位姿图的构建、优化目标及因子图优化策略。位姿图优化只考虑位姿变量,减少计算量,适合大规模场景。通过贝叶斯网络和因子图模型,利用最小二乘法进行优化,实现高效且准确的后端优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

后端优化主要有两种方法,一是以BA为主的图优化,另一种是使用位姿图的优化方法。本讲将讲述位姿图的优化方法。

一、 位姿图介绍

后端优化的目标是在前端给出位姿和路标的初始估计值后,使用已得的全部数据对其进行优化。其中特点是:

  • 特征点变量数远大于位姿变量数
  • 特征点变量会趋于稳定

其中特征点变量在几次优化后的情况分为两种:

  • 收敛:其空间位置会收敛至一个值(三维坐标)保持不动。
  • 发散:称为外点,处于视野外,看不到,不再计入地图。

因此,高效的后端优化只需要做:

  • 只优化位姿变量
  • 无需与前端关联。

而BA做的是:优化每一个相机的位姿和每一个特征点的位置。这样会导致在特征点数目很多的大场景、或运行时间变长后,计算量过大,以至于无法实时化。
因此可以构建位姿图,其特点是:

  • 顶点:优化变量只有位姿。εεε
  • 边:运动方程,两个为子节点之间的相对运动估计δεi,j\delta ε_{i,j}δεi,j由两个关键字之间通过特征匹配之后得到的运动估计来给定初始值,为什么边有初始值?

二、 位姿图优化

与图优化一样,只不过建的图只用位姿不用特征点。思路也是,确定边、顶点,建图,确定误差,确定目标函数,计算雅可比,转为最小二乘问题,使用使用GN、LM等方法优化。

  • 顶点:位姿变量(初值由前端给出,李代数标识)
  • 边:相邻位姿节点之间的运动估计
  • 误差:ei,je_{i,j}ei,j,对εiε_iεiεjε_jεj分别求导
  • 雅可比:给李代数优化变量左扰动,使用BCH近似导出
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值