自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(31)
  • 收藏
  • 关注

原创 用 PyInstaller 打包 PyTorch 项目

摘要:本文总结了使用PyInstaller打包PyTorch模型为.exe的实践指南。重点解决四大常见问题:1)工作目录导致闪退,需添加路径修正代码;2)Matplotlib图像显示异常,需改用非交互式后端;3)GPU兼容性问题,建议自动检测设备;4)依赖库缺失,推荐精简依赖并添加隐藏导入。提供了完整打包命令和示例代码,包含工作目录设置、错误捕获及图像保存方案,确保生成的可执行文件能在不同Windows环境独立运行。

2025-06-24 17:00:26 323

原创 OSError: We couldn‘t connect to ‘https://huggingface.co‘ to load this file, couldn‘t find it in the

摘要:文章分析了Hugging Face模型下载失败的问题及解决方案,主要包含三种方法:(1)检查并设置代理连接;(2)手动下载模型文件到本地后加载;(3)使用国内镜像或离线模式。其中重点介绍了手动下载模型的具体操作步骤,包括所需下载的文件清单和本地路径加载方式,为网络受限环境下使用Hugging Face模型提供了可行的替代方案。

2025-06-24 00:23:57 354

原创 PyABSA 入门指南:基于深度学习的情感分析工具包

PyABSA是一个基于PyTorch的开源工具包,专注于细粒度的方面级情感分析(ABSA)任务。该工具支持多种NLP任务包括文本分类、主题抽取等,并提供多语言支持。PyABSA优势在于简单易用的API接口、模块化设计,并集成了BERT-SPC等SOTA模型。虽然需要额外配置GPU支持且中文文档较少,但其内置的基准数据集和预训练模型使其成为ABSA研究的实用工具。安装简便,可通过pip直接获取,并提供清晰的训练流程示例,适合快速开展情感分析实验。

2025-06-24 00:18:48 365

原创 在AI时代看清糖网:糖尿病视网膜病变筛查的转型之路

人工智能技术在糖尿病视网膜病变筛查中的研究与应用进展 糖尿病视网膜病变(DR)是全球糖尿病患者最常见的致盲并发症。随着深度学习技术的发展,基于卷积神经网络的AI模型在DR筛查中展现出90%以上的敏感性和特异性,部分系统已获临床应用许可。目前研究聚焦于解决三大挑战:算法泛化性不足、黑箱决策问题以及临床标准化差异。未来发展方向包括:结合远程医疗和手持设备提升筛查可及性,开发多病种联合检测系统,以及增强模型可解释性。值得注意的是,OCT技术对DME检测的准确性比传统方法提高42.1%,而风险分层筛查策略可减少40

2025-06-24 00:08:21 982

原创 融合LSTM与自注意力机制的多步光伏功率预测新模型解析

本文提出一种LSTM与Transformer结合的混合模型LSTMformer,用于提升光伏发电多步预测精度。该方法创新性地融合历史数据和天气预报信息,通过LSTM捕捉时序特征,利用自注意力机制建模变量相关性。实验表明,在2年5个月的真实光伏数据上,LSTMformer相比传统LSTM长期预测R²提升22.5%,在短期输入(1小时)下仍能保持高精度(R²=0.921)。该研究为可再生能源功率预测提供了一种有效解决方案,特别适合中长期预测场景。

2025-06-23 23:28:54 578

原创 用无人机和AI守护高原净土:高海拔自然保护区的垃圾检测新方法

本研究首创性地将小型无人机、遥感图像配准、变化检测与Faster R-CNN目标检测相结合,提出了一种适用于高原自然保护区的垃圾自动识别方法。研究验证了:在训练样本稀缺条件下,通过数据增强与迁移学习仍可实现高性能检测;图像变化检测大大减轻了全图检测负担;该方法适合推广至其他如城市环境检测、山地巡查等场景。

2025-06-23 23:09:28 996

原创 普通卷积 VS 深度可分离卷积

深度可分离卷积通过将标准卷积拆分为逐通道卷积和逐点卷积两个步骤,显著降低了计算复杂度。对于3×3卷积核,其计算量约为标准卷积的1/9,实际运行速度可提升8-9倍。该方法在保持特征提取能力的同时,大幅减少了参数量和运算成本,特别适用于移动端和轻量化网络设计。

2025-06-23 22:50:43 899

原创 Towards Generalizable Diabetic Retinopathy Grading in Unseen Domains

摘要: 论文《Towards Generalizable Diabetic Retinopathy Grading in Unseen Domains》针对糖尿病视网膜病变(DR)分级模型在新数据域中的泛化问题,提出GDRNet框架。该框架通过FundusAug增强图像多样性、DahLoss结合监督与对比学习、DCR解决数据不平衡,系统性应对视觉风格偏移、诊断模式多样性和域-类别不平衡三大挑战。作者构建GDRBench基准(含8个数据集),验证GDRNet在DG(多源训练)和ESDG(单源训练)设定下的优越

2025-06-23 22:16:41 690

原创 虚拟机桥接网络配置失败问题

在进行基于虚拟机的ONVIF摄像头开发与调试时,若虚拟机无法直接访问本地局域网设备,通常需要将虚拟机的网络设置为桥接模式。然而,当虚拟机网卡状态为DOWN且未分配IP地址时,可以通过以下步骤解决:首先,彻底关闭虚拟机并修改VMware网络适配器配置,设置为桥接模式并勾选“模拟物理连接状态”。然后,启动虚拟机并手动激活网卡,执行命令sudo ip link set ens33 up和sudo dhclient ens33以获取IP地址。

2025-05-09 01:50:29 406

原创 【踩坑记录】ONVIF 设备提示 “The action requested requires authorization“ 的真正原因

在使用 ONVIF Device Manager(ODM)登录海康摄像头时,用户遇到了“The action requested requires authorization and the sender is not authorized”的401错误。尽管使用了正确的admin账号和密码,登录仍然失败。经过排查,发现问题的核心在于设备时间不一致,导致WSSE Token验证失败。ONVIF协议中的WS-Security要求客户端发送的认证请求中的时间戳(Created字段)与设备时间相差不超过5秒。

2025-05-09 01:36:10 534

原创 ERROR: Unable to find the kernel source tree for the currently running kernel.

这个问题通常是由于缺少 内核开发包 (kernel-devel) 或 内核源代码 (kernel-source) 引起的,NVIDIA 驱动需要这些文件来构建内核模块。禁用 nouveau 驱动并确保 kernel-devel 和 kernel-headers 已安装后,重新运行 NVIDIA 驱动安装程序。这样确保安装的内核开发包与当前内核版本完全一致。在 NVIDIA 驱动安装之前,需要禁用 Nouveau 开源驱动。

2025-03-13 15:15:56 1297

原创 WebSocket(WS)协议系列(五)非对称加密

公钥 和 私钥 是成对的加密密钥,用于非对称加密(公钥加密,私钥解密)。它们是通过数学算法生成的,具有以下特点:公钥:可以公开共享,任何人都可以获取它。私钥:只有密钥的拥有者自己知道,应该保密。在非对称加密中,公钥加密 的信息只能用 私钥解密,而用 私钥加密 的信息只能用 公钥解密。例子:如果你用 某人的公钥 来加密消息,只有 该人 的私钥才能解密,别人无法解密。如果你用 自己的私钥 来加密消息,任何人都可以用你的公钥来验证你是消息的发送者(因为只有你能解密这个信息)。

2025-03-13 15:00:11 1095

原创 WebSocket(WS)协议系列(四)SSL/TLS协议

SSL(Secure Sockets Layer) 和 TLS(Transport Layer Security) 是用于在网络上实现安全通信的协议,它们通常用于加密数据传输,保护数据免受窃取、篡改和伪造。虽然 SSL 已被逐步淘汰,现代网络通信大多使用 TLS,但很多时候,我们仍然会把 SSL/TLS 一起提及,通常理解为同一个概念。

2025-03-07 01:01:01 1919

原创 WebSocket(WS)协议系列(三)加密

ws 和 wss 都是 WebSocket 协议的两种形式,它们分别代表了不同的传输层协议。它们之间的主要区别在于加密和安全性。ws 使用的端口通常是 80(与普通 HTTP 相同),这意味着它不会对数据进行加密。特点:数据是 明文传输 的,不提供任何加密。适用于不需要安全保护或在局域网内使用的应用。对于开放网络或公网上传输的敏感数据,不推荐使用 ws,因为它容易受到 中间人攻击(MITM) 等网络攻击的影响。

2025-03-07 00:33:30 1568

原创 WebSocket(WS)协议系列(二)事件机制

事件机制是一种编程模型,通常用于处理异步事件。在这种模型中,程序不会一直轮询或等待某个任务的完成,而是当某个事件发生时,系统会自动触发特定的处理函数(通常被称为回调函数)来响应这个事件。

2025-02-19 07:34:53 1245

原创 WebSocket(WS)协议系列(一)基本概念

WebSocket(WS)协议是一种网络通信协议,提供了全双工、单连接、低延迟的通信方式,通常用于浏览器和服务器之间的实时数据交换。与传统的HTTP协议相比,WebSocket允许在客户端和服务器之间,可以在连接建立后,而不需要每次都重新建立连接。

2025-02-19 07:09:47 1822

原创 如果MLlib 中没有所需要的模型,如何使用 Spark 进行分布式训练?

如果 MLlib 中没有你所需要的模型,并且不打算结合更强大的框架(如 TensorFlowOnSpark 或 Horovod),仍然可以使用 Spark 进行分布式训练,但需要手动处理训练任务的分配、数据准备、模型训练、结果合并和模型更新等过程。

2025-02-17 02:07:38 417

原创 windows怎么找conda路径?

conda info找到输出中的 base environment 字段,显示的路径即为 Conda 的安装路径。

2025-02-17 01:57:34 2273

原创 利用 Spark Streaming 和 HDFS 实现实时数据预处理与训练示例

Spark Streaming 是一个强大的工具,广泛应用于处理实时数据流。本文将以股票预测任务为例,展示如何结合 Spark Streaming 和 HDFS 实现一个简单的实时数据预处理和训练系统。

2024-12-28 03:02:04 1075

原创 使用 ARIMA 对股票涨跌额进行预测(仅适合作业示例)

时间序列预测在金融领域中具有重要意义,尤其是在股票价格的预测上。本文以 ARIMA 模型为例,探讨如何基于历史数据对股票涨跌额进行预测,并通过 AIC 和 BIC 指标选择最优参数。

2024-12-28 02:22:30 1996

原创 Native Hadoop 库警告

解决 Native Hadoop 库警告 问题(Unable to load native-hadoop library for your platform...),需要确保 Hadoop 的原生库正确安装并配置。

2024-12-15 19:10:56 604

原创 使用 LSTM 对股票涨跌额进行预测(仅适合作业示例)

在机器学习和深度学习中,时间序列预测是一项常见且具有挑战性的任务。LSTM(Long Short-Term Memory)是一种常用的循环神经网络(RNN)结构,善于处理序列数据与长期依赖问题。因此,许多教程会以 LSTM 为例对股票价格或涨跌进行预测。本篇教程中的模型仅为示例用途,不具备实际预测价值。实际股市预测需要考虑极其复杂的因素,包括宏观经济、市场情绪、政策风险、突发事件等。本教程简化了许多环节,结果仅能作为参考代码与学习对象,并不建议将其用于真实的投资决策。

2024-12-12 14:35:40 992

原创 安装了 Miniconda,conda仍然无法执行:cannot execute: required file not found

尝试使用 Python 执行 conda,能启动,那么有可能是文件权限有问题导致初始化conda时失败,继而导致conda 命令无法执行。

2024-12-03 23:20:34 765

原创 conda init 执行遇到OpenSSL错误

解决 OpenSSL 相关的兼容性问题

2024-12-03 23:17:40 431

原创 WSL 中创建 Docker 各种网络的方法和解释教程

在 WSL 中,最常用的是 Bridge 和 Host 模式。

2024-11-18 13:37:47 1515

原创 WSL中搭建SPARK平台(下)

配置ssh免密、hadoop和spark配置文件

2024-11-18 03:34:42 1007

原创 WSL中搭建SPARK平台(中)

本部分教程将指导您在Docker容器中构建一个Spark集群,包括配置主节点和工作节点。

2024-11-17 23:55:05 1149

原创 构建WSL 2

在 WSL 2 上安装 Docker Desktop,并在 Docker 设置中启用 WSL 集成。

2024-11-12 17:06:28 728

原创 WSL中搭建SPARK平台(上)

小白轻松搭建Hadoop+Spark

2024-11-12 00:10:17 543

原创 伺服控制的补偿算法

伺服控制的补偿算法:PID

2024-09-07 12:00:23 4015

原创 T-sne

t-SNE(t-分布邻域嵌入,t-Distributed Stochastic Neighbor Embedding)是一种常用于高维数据降维和可视化的算法。它通过将高维数据投射到二维或三维空间,使得数据的结构关系在低维空间中得到良好的保留,特别适用于展示数据的局部和全局结构。

2024-09-04 19:20:41 1471 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除