统计学中的p值

假设检验是一种通过证明原假设H0的反面来推断备择假设H1的方法。p值表示在H0为真时,观察到当前或更极端结果的概率。若p值小于等于预先设定的显著性水平α(如0.01或0.05),则拒绝H0,否则不拒绝。第一类错误(显著性水平α)是错误拒绝正确H0的概率。在实践中,按照提出假设、指定显著性水平、计算p值并比较的流程进行决策。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在我看来,假设检验从本质上是一种反证法。当你想证明一样事物是对的,有时候不太好证明,因为一件你以为对的东西可能只是因为你还没发现它错的一面,相反你想证明一件事物是错的就容易多了。在假设检验中,证明备择假设H1存在困难,我们就去证明它的反面原假设H0。

p值一直是一个令人迷惑的地方,p值实际上是当H0假设为真,一些极端情况出现的概率。即

p={
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值