概率论与随机信号分析

本文探讨了统计学中的无偏估计和渐进无偏估计的概念。无偏估计是指估计量的期望值等于参数的真实值,而渐进无偏估计则是在样本数量趋近无穷时,估计量的期望值接近真实值。一致性则描述了统计量在大量重复实验下几乎必然收敛于真实参数的情况。文中举例说明了一致性和渐进无偏性的区别,指出一致估计一定是渐进无偏的,但反之不成立,并给出了具体的数学表达式作为例证。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

·无偏:E(xi)=μ
·渐进无偏:大样本性质,即n→∞时,E(θi)=μ 举例:θi=n/(n+1)xi
·一致性/相合性:统计量依概率收敛于真值:举例θi=1/n*Σxi=xbar
     注:均方收敛(随机变量的方差趋于0)可以推出依概率收敛。放松一步,Lp收敛(p>1)即可(比如1.1次方收敛)推出。
·一致一定渐进无偏,反之不成立
·渐进无偏但不一致例子:θi=n/(n+1)*xi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值