CGAN中的label_embedding = Flatten()(Embedding(10, 100)(label))行代码解释

本文探讨了在卷积生成对抗网络(CGAN)代码中,Embedding和Flatten层的作用。通过实例展示了如何使用这两个层,其中Embedding层将标签映射到100维的向量空间,而Flatten层则将这些向量拉平,为后续运算(如与噪声向量相乘)做准备。这两个层在构建深度学习模型时对于处理分类信息至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在看CGAN代码是对该行产生困惑

label_embedding = Flatten()(Embedding(10, 100)(label))

经查询和测试两个函数Flatten()和Embedding() 得出以下结论,以便后续复习使用。

1.测试内容1

from tensorflow.keras.layers import Flatten, Embedding, Input
label = Input(shape=(1,), dtype='int32')
# label = np.random.randint(0, 9, (32, 1))
embedding = Embedding(10, 100)(label)
label_embedding = Flatten()(Embedding(10, 100)(label))
print(embedding.shape)
print(label_embedding.shape)

输出结果:
在这里插入图片描述

Embedding层

输入参数为10,属于标签种类数,即词向量种类数。
输出参数为100,输出维度内含有100个元素表示此标签
第0维表示期待batch输入,第1和第2维表示标签数,表示标签的维度(含100个元素)

Flatten层

第0维也就是第一个括号代表待输入batch
第1维表示将label Embedding之后的元素表示个数

2.测试内容2

from tensorflow.keras.layers import Flatten, Embedding, Input
label = Input(shape=(1,), dtype='int32')
label = np.random.randint(0, 9, (32, 1))
embedding = Embedding(10, 100)(label)
label_embedding = Flatten()(Embedding(10, 100)(label))
print(embedding.shape)
print(label_embedding.shape)

输出结果:
在这里插入图片描述
此内容是加入batch后的输出结果
可见embedding层将每个label与100个元素表示的label对应了起来 然后经过Flatten拉平(1,100)从而和以后的noise做multiply

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

plus_left

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值