Improving Multimodal Fusion with Hierarchical Mutual Information Maximization for Multimodal Sentime

本文提出了一种基于层次互信息最大化的多模态情感分析方法,通过BERT和SLSTM对文本、图像和语音进行编码,利用互信息最大化策略提升模态间的融合效果。模型通过CPC编码和损失函数优化,旨在准确预测情绪强度并增强模态表征的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Improving Multimodal Fusion with Hierarchical Mutual Information Maximization for Multimodal Sentiment Analysis

代码

https://github.com/eclare-lab/Multimodal-Infomax.

一、互信息是什么?

互信息是信息论里的原理,是联合分布与边缘分布 的相对熵,公式如下E的部分是写P(X,Y)在这里插入图片描述
E表示联合分布的统计平均值,即信源的不确定性等于每个符号的不确定性的统计平均值

二、模型构建

2.1 问题定义

在这里插入图片描述
X表示文本,图像,语音(t,v,a)三种输入模态,Lm是每种输入模态系列长度,dm是特征向量维度。

本文目标是由输入x预测输出y,y能够反映出情绪强度

2.2 总体思路

在这里插入图片描述

2.3 输入模态编码

文本用BERT编码,其他两种模态用SLSTM编码
在这里插入图片描述

2.4模式间互信息最大化

代码如下(示例):
两个模态为一组,分成两组,用公式(3)计算最大互信息。因为text贡献更大,因此每组都含有text,也就是公式中的X,而visual和acounstic是Y。其中q(y/x)用多元高斯分布来表征,通过计算(4)损失函数最小化来预测多元高斯分布的均值和方差。
在这里插入图片描述
(4)中L是损失函数,N是batch size。最小化损失函数更新多元高斯分布神经网络的参数。使得条件概率q(y/x)最大化,互信息也就越大。

公式(3)中还剩下H(Y)未知,用高斯混合模型求解。每一类用两个正态分布表示(如(5),一个正极性一个负极性)在这里插入图片描述
然后计算多变量正态分布的信息熵如(8)
![在这里插入图片描述](https://img-blog.csdnimg.cn/1daa818a1e994e27868c3a5fc54在这里插入图片描述 在这里插入图片描述表示第一个正太分布的协方差。
互信息下界的最大化的损失函数等于两组数据相加(tv的互信息+ta的互信息),如公式(9)
在这里插入图片描述
注意:这里的LBA是第一个损失函数。互信息最大化使得每个模态的表征更加准确。

2.4 融合阶段的互信息最大化

目标:计算输入模态X和融合结果Z之间的互信息,使其最大化。即求得F的最优表示函数在这里插入图片描述文章采用从Z预测X的反过程。s 是输入和输出之间相似度的度量,用互信息来衡量相似度。在这里插入图片描述G是参数为o的神经网络,能够由Z预测到h,每个模态的损失函数如(11)
在这里插入图片描述
这一层级总的损失函数是:
在这里插入图片描述根据(12)优化F并预测输出的y,然后计算损失(13)
在这里插入图片描述
最后总的损失函数为(14)
在这里插入图片描述

总结

1.CPC编码没看懂
2.互信息加个负号就是损失函数?(9)

引用\[2\]:论文名称:Improving Multimodal Named Entity Recognition via Entity Span Detection with Unified Multimodal Transformer 论文作者:Jianfei Yu, Jing Jiang, Li Yang, Rui Xia 论文地址:2020.acl-main.306 https://www.aclweb.org/anthology/2020.acl-main.306/ 论文代码:UMT https://github.com/jefferyYu/UMT 论文摘要: 根据引用\[2\]提供的信息,multimodal transformer的代码可以在GitHub上找到,代码的链接是https://github.com/jefferyYu/UMT。这个代码是用于实现论文《Improving Multimodal Named Entity Recognition via Entity Span Detection with Unified Multimodal Transformer》中提出的方法的。 #### 引用[.reference_title] - *1* *3* [[深度学习论文笔记] TransBTS: Multimodal Brain Tumor Segmentation Using Transformer 基于Transformer的...](https://blog.csdn.net/weixin_49627776/article/details/115449591)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [通过统一多模态Transformer(UMT)的实体扫描检测(ESD)来改进多模态命名实体识别(MNER)](https://blog.csdn.net/qq_43703681/article/details/113748435)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值