论文解读:EMA:Efficient Multi-Scale Attention Module with Cross-Spatial Learning(2023)

1.效果

​​​​​​​

2.模型结构

3.与ca对比

4.

### 多尺度空间金字塔注意力机制的有效方法 #### 关键概念解析 多尺度空间金字塔注意力机制通过引入不同尺度的感受野来捕捉图像中的特征,从而提高模型对复杂场景的理解能力。这种机制通常结合卷积神经网络(CNN),利用多个分支处理同一输入的不同分辨率版本。 #### 实现细节 为了有效地应用多尺度空间金字塔注意力机制,在每个块级别计算来自各个分支生成的特征图加权平均值[^1]。权重由学习到的标量参数决定,这些参数指示相对于其他映射而言应关注的程度。此过程允许模型自适应地聚焦于重要的局部区域,而忽略不那么相关的部分。 对于具体实现方式之一——CBAM模块,则进一步区分了通道维度上的注意力建模以及空间位置上的建模,并且两者之间采用串联结构依次执行[^2]。值得注意的是,在实际操作过程中,可以同时运用最大池化与均值池化的策略获取全局上下文信息。 此外,当涉及到语义分割任务时,有研究指出使用硬标签而非软标签能够提升存储效率及训练速度[^4]。这意味着尽管某些情况下可能损失了一定程度的概率分布表达力,但在特定应用场景下依然可以获得性能优势。 ```python import torch.nn as nn class MultiScaleSpatialPyramidAttention(nn.Module): def __init__(self, channels): super(MultiScaleSpatialPyramidAttention, self).__init__() # 定义不同的感受野大小 self.branches = nn.ModuleList([ nn.Conv2d(channels, channels, kernel_size=3, padding=dilation, dilation=dilation) for dilation in [1, 2, 4] ]) def forward(self, x): attentions = [] for branch in self.branches: atten_map = branch(x).sigmoid() attentions.append(atten_map * x) out = sum(attentions) / len(attentions) return out ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值