NLTK 2 获得文本语料和词汇资源

这篇博客介绍了如何使用NLTK库在Python中获取各种文本语料库,包括古登堡项目、网络和聊天文本、布朗语料库、路透社语料库、就职演说语料库以及标注文本语料库,提供了获取和分析原始文本及句子的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 获得文本语料库

1.1 古登堡语料库(Project Gutenberg)
#nltk包含gutenberg的一小部分文本
import nltk
nltk.corpus.gutenberg.fileids()
emma=nltk.corpus.gutenberg.words('austen-emma.txt')
print len(emma)                    #192427
form nltk.corpus import gutenberg
gutenberg.fileids()
for fileid in gutenberg.fileids():
    num_chars=len(gutenberg.raw(fileid))
    num_words=len(gutenberg.words(fileid))
    num_sents=len
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值