在这篇文章中,我们将介绍如何使用中转API来调用大模型进行文本嵌入(embedding)。文本嵌入是自然语言处理中的一种重要技术,它可以将文本转换为向量,从而方便后续的机器学习和深度学习任务。我们将使用LLMRailsEmbedding
模型来演示这一过程。
安装必要的库
首先,我们需要安装llama-index
库。如果你是在Colab上运行这段代码,请执行以下命令:
!pip install llama-index-embeddings-llm-rails
!pip install llama-index
导入所需的模块
安装完毕后,我们导入需要的模块:
from llama_index.embeddings.llm_rails import LLMRailsEmbedding
import os