基于FaithfulnessEvaluator的AI响应准确性评估

在AI开发过程中,如何确保AI生成的响应与原始数据源匹配,而不是凭空生成(即“幻觉”),是一个重要的研究课题。本文将介绍如何使用FaithfulnessEvaluator模块来评估AI响应的可靠性,具体演示基于LlamaIndex和OpenAI的GPT-4模型进行评估。

1. 环境设置

首先,我们需要安装相关的Python包:

%pip install llama-index-llms-openai pandas[jinja2] spacy

接下来,我们需要使用nest_asyncio库来解决异步事件循环问题:

import nest_asyncio
nest_asyncio.apply()

然后设置环境变量OPENAI_API_KEY:

import os
os.environ["OPENAI_API_KEY"] = "sk-..."

2. 导入必要的模块

from llama_index.core import (
    VectorStoreIndex,
    SimpleDirectoryReader,
    Response,
)
from llama_index.llms.openai import OpenAI
from llama_index.core.evaluation import FaithfulnessEvaluator
from llama_index.core.node_parser import SentenceSplitter
import pandas as pd

pd.set_option("display.max_colwidth", 0)

3. 初始化GPT-4模型并创建评估器

# 使用GPT-4模型进行评估
gpt4 = OpenAI
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值