在AI开发过程中,如何确保AI生成的响应与原始数据源匹配,而不是凭空生成(即“幻觉”),是一个重要的研究课题。本文将介绍如何使用FaithfulnessEvaluator
模块来评估AI响应的可靠性,具体演示基于LlamaIndex和OpenAI的GPT-4模型进行评估。
1. 环境设置
首先,我们需要安装相关的Python包:
%pip install llama-index-llms-openai pandas[jinja2] spacy
接下来,我们需要使用nest_asyncio
库来解决异步事件循环问题:
import nest_asyncio
nest_asyncio.apply()
然后设置环境变量OPENAI_API_KEY:
import os
os.environ["OPENAI_API_KEY"] = "sk-..."
2. 导入必要的模块
from llama_index.core import (
VectorStoreIndex,
SimpleDirectoryReader,
Response,
)
from llama_index.llms.openai import OpenAI
from llama_index.core.evaluation import FaithfulnessEvaluator
from llama_index.core.node_parser import SentenceSplitter
import pandas as pd
pd.set_option("display.max_colwidth", 0)
3. 初始化GPT-4模型并创建评估器
# 使用GPT-4模型进行评估
gpt4 = OpenAI