使用Pandas DataFrame Agent实现智能数据分析
引言
在数据分析领域,Pandas是一个不可或缺的Python库。但是,如何让数据分析变得更智能、更高效呢?本文将介绍如何使用Langchain的Pandas DataFrame Agent,通过自然语言交互的方式来分析数据,大大提高数据分析的效率和灵活性。
主要内容
1. 设置环境
首先,我们需要安装必要的库并导入相关模块:
!pip install langchain langchain_experimental langchain_openai pandas openai
from langchain.agents.agent_types import AgentType
from langchain_experimental.agents.agent_toolkits import create_pandas_dataframe_agent
from langchain_openai import ChatOpenAI, OpenAI
import pandas as pd
2. 加载数据
我们将使用Titanic数据集作为示例:
df = pd.read_csv("https://raw.githubusercontent.com/pandas-dev/pandas/main/doc/data/titanic.csv")
3. 创建Pandas DataFrame Agent
有两种方式可以创建Agent:
使用ZERO_SHOT_REACT_DESCRIPTION
agent = create_pandas_dataframe_agent(OpenAI(temperature=0), df, verbose=