# 使用SKLearnVectorStore进行向量存储与查询
在现代机器学习应用中,向量存储是一种重要的技术,用于高效地进行文本相似度查询。`SKLearnVectorStore`是Scikit-learn的一种封装,允许开发者将向量存储持久化为JSON、BSON或Apache Parquet格式,方便后续的加载和查询。在本文中,我们将逐步展示如何使用`SKLearnVectorStore`进行向量存储和查询操作。
## 技术背景介绍
Scikit-learn作为一个开源的机器学习库,提供了丰富的算法实现,`SKLearnVectorStore`则是在此基础上进行扩展,提供向量存储的持久化功能,包括JSON、BSON和Apache Parquet等格式的支持。这为机器学习任务的数据管理带来了极大的灵活性。
## 核心原理解析
`SKLearnVectorStore`主要通过将文本数据转换为向量并进行持久化存储来实现高效查询。利用OpenAI的嵌入功能,文本被转换为向量,然后存储在指定的格式中。这种方式不仅提高了查询效率,还保证了数据的持久性。
## 代码实现演示
首先,我们需要安装必要的库。除了Scikit-learn,我们还需要一些额外的库来支持不同的序列化格式。
```bash
%pip install --upgrade --quiet scikit-learn
%pip install --upgrade --quiet langchain-community
%pip install --upgrade --quiet bson # 如果需要使用BSON序列化
%pip install --upgrade --quiet pandas pyarrow # 如果需要使用Parquet序列化
我们将使用OpenAI嵌入来进行文本向量化:
import os
from getpass import getpass
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import SKLearnVectorStore
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
import tempfile
# 设置OpenAI API密钥
os.environ["OPENAI_API_KEY"] = getpass("Enter your OpenAI key:")
# 加载文档
loader = TextLoader("../../how_to/state_of_the_union.txt")
documents = loader.load()
# 文本拆分
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
# 创建嵌入对象
embeddings = OpenAIEmbeddings()
# 指定持久化路径
persist_path = os.path.join(tempfile.gettempdir(), "union.parquet")
# 创建向量存储并持久化
vector_store = SKLearnVectorStore.from_documents(
documents=docs,
embedding=embeddings,
persist_path=persist_path,
serializer="parquet",
)
# 进行查询
query = "What did the president say about Ketanji Brown Jackson"
docs = vector_store.similarity_search(query)
print(docs[0].page_content)
# 持久化向量存储
vector_store.persist()
print("Vector store was persisted to", persist_path)
# 加载持久化的向量存储进行查询
vector_store2 = SKLearnVectorStore(
embedding=embeddings, persist_path=persist_path, serializer="parquet"
)
docs = vector_store2.similarity_search(query)
print(docs[0].page_content)
# 清理
os.remove(persist_path)
应用场景分析
该技术可以应用于任何需要高效文本数据查询和持久化的场景,例如文档检索系统、问答系统以及推荐系统。通过持久化向量存储,可以减轻重复计算带来的性能开销,提高系统的响应速度。
实践建议
- 根据数据量选择合适的持久化格式,Apache Parquet在处理大规模数据时通常表现优异。
- 定期更新向量存储,确保数据检索的准确性。
- 结合其他库与技术,提升查询效率,如使用缓存技术。
如果遇到问题欢迎在评论区交流。
---END---