ppp33
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
34、探索Benders分解算法与数据拟合问题的未解之谜
本文探讨了Benders分解算法和数据拟合问题中的开放性研究难题。针对Benders分解算法,分析了其收敛性质、上界波动现象、最优性割与可行性割的作用,以及多割生成策略中的割数量优化问题,并总结了当前研究进展和待解决问题。在数据拟合方面,讨论了分段单调差分的非分解情况及其带来的计算挑战,提出了特殊情况(m1或m2)的动态规划解决方法和一般情况(m≥3且σ≥1)的技术需求。最后,展望了未来在算法优化和数据分析领域的研究方向。原创 2025-08-21 02:12:33 · 44 阅读 · 0 评论 -
33、集合划分问题的整数单纯形法与Benders分解算法的开放问题
本博客主要探讨了集合划分问题中整数单纯形法与Benders分解算法的相关理论、应用及挑战。整数单纯形法在求解过程中面临循环和局部最优问题,而Benders分解算法则涉及问题分解、割生成和收敛性优化。博客分析了这两种方法的相似性和差异性,并探讨了它们在物流配送、电力系统等实际场景中的应用。最后,博客总结了相关开放性问题,并展望了未来在算法改进、跨领域应用及算法融合等方面的研究方向。原创 2025-08-20 14:34:58 · 30 阅读 · 0 评论 -
32、集合划分问题的全整数单纯形法
本文围绕集合划分问题的全整数单纯形法展开讨论,重点分析了全整数旋转操作的定义、性质及其在保持解整数性方面的优势。文章通过具体示例说明了幺模基的重要性,并探讨了全整数旋转操作在搜索路径、局部最优解规避以及循环问题中的表现。此外,还对全整数旋转操作的局限性及应对策略进行了深入分析,最后给出了实际应用思路与未来研究方向。原创 2025-08-19 16:31:08 · 28 阅读 · 0 评论 -
31、元启发式算法组合设计与集合划分问题的积分单纯形法
本博客主要探讨元启发式算法组合设计与集合划分问题的积分单纯形法。元启发式算法组合通过算法交互和并行性提高优化问题的求解效率和质量,而积分单纯形法则利用准整数性为集合划分问题提供整数解的求解方法。文章详细介绍了两者的理论基础、实现方法、对比分析以及实际应用案例,并展望了未来的研究方向。原创 2025-08-18 16:58:47 · 26 阅读 · 0 评论 -
30、基于元启发式的算法组合设计
本文探讨了基于元启发式的算法组合设计,重点分析了优化问题中经典算法的局限性以及元启发式算法的应用。博文详细介绍了算法组合设计的四个核心问题:组成算法的选择、计算预算的分配、组成算法间的交互以及并行与顺序应用方式。文章还讨论了当前主流的算法选择方法、预算分配策略及交互机制,并比较了顺序与并行应用的优缺点。最后,总结了算法组合设计的关键挑战与未来发展方向。原创 2025-08-17 13:35:21 · 23 阅读 · 0 评论 -
29、最小平方和聚类问题的局部搜索算法研究与算法组合设计
本博文围绕最小平方和聚类问题,研究了基于局部搜索的GVNS算法及其变体的表现,并探讨了其在不同规模数据集上的性能。实验结果表明,GVNS1在小实例中优于其他变体,而在大型实例中,GVNS算法的解质量显著优于最先进的SCA算法。此外,博文还提出了算法组合设计框架,涵盖算法选择、资源分配、交互设计与并行性优化,旨在通过组合多个算法的优势来提升整体求解性能。最后,对未来的研究方向进行了展望,包括邻域结构优化、初始解利用、资源分配模型改进等。原创 2025-08-16 09:40:15 · 20 阅读 · 0 评论 -
28、解决最小平方和问题的基本局部搜索方法综述
本文综述了解决最小平方和(MSSC)问题的基本局部搜索方法,重点介绍了K-means、H-means和J-means三种经典启发式聚类算法的原理、流程及优缺点。文章进一步探讨了基于这些算法的可变邻域下降(VND)方法,包括顺序VND、嵌套VND和混合VND,并结合通用可变邻域搜索(GVNS)方法进行全局优化。通过计算实验对不同算法的性能进行了对比分析,并给出了在不同场景下的实际应用建议。文章为解决MSSC问题提供了系统的算法框架和技术参考,对聚类优化研究和应用具有指导意义。原创 2025-08-15 09:56:34 · 29 阅读 · 0 评论 -
27、圆填充问题与最小平方和聚类问题解析
本文深入解析了圆填充问题与最小平方和聚类问题的数学原理与求解方法。在圆填充问题中,详细推导了Type 1 PT、Type 2 QR等情况下的最大值求解过程,并探讨了Malfatti n2问题及附录中的内切圆面积最大化问题。对于最小平方和聚类问题,介绍了问题定义、经典求解方法(如K-means、VNS等),并总结了初始解获取和局部搜索策略。最后对两类问题的未来研究方向进行了展望,强调其在数学优化与实际应用中的重要意义。原创 2025-08-14 10:11:41 · 26 阅读 · 0 评论 -
26、圆填充问题及其与马尔法蒂问题的联系
本文围绕圆填充问题及其与马尔法蒂问题的联系展开研究,详细探讨了如何通过一条直线分割三角形的两条边,使得分割区域内的两个圆的总面积最大化。文章解析了恩赫巴特问题作为马尔法蒂问题的特殊情况,并通过引入符号、建立目标函数、证明最大值的存在性以及候选点的定义域,为解决此类几何优化问题提供了理论基础和方法支持。原创 2025-08-13 11:07:33 · 32 阅读 · 0 评论 -
25、距离几何中的开放研究领域
这篇博文探讨了距离几何中的几个开放研究领域,包括新的表示与分支策略、灵活性与刚性之间的相变现象,以及未分配距离几何问题(uDGP)的理论与应用。文章详细分析了这些问题的理论背景、相关算法及实际应用价值,并提出了未来可能的研究方向。这些研究领域不仅在数学理论上具有重要意义,还在材料科学、生物医学等实际应用中具有广阔前景。原创 2025-08-12 13:00:52 · 25 阅读 · 0 评论 -
24、距离几何中的开放研究领域
本博客围绕距离几何中的开放研究领域展开,重点探讨了距离几何问题(DGP)的复杂度状态在不同计算模型下的差异,分析了DGP解的数量特性及其与图刚性的关系,并介绍了相关算法如BP算法在蛋白质骨架建模中的应用。此外,还讨论了欧几里得距离矩阵与半正定矩阵的联系、克利福德代数的潜在作用以及未来研究方向,如复杂度深入研究、解数量精确计算、算法优化和跨领域应用拓展。这些研究不仅在理论计算机科学中具有重要意义,也在生物、物理和工程等领域展现出广阔的应用前景。原创 2025-08-11 14:40:49 · 27 阅读 · 0 评论 -
23、距离几何中的刚性与矩阵完成问题的计算复杂性
本博客探讨了距离几何领域中刚性和矩阵完成问题的计算复杂性。重点介绍了空间刚性的组合特征,包括Laman定理在三维扩展中的失效以及Meera Sitharam提出的解决方案。同时,讨论了全局刚性在不同维度下的条件及其应用,以及矩阵完成问题(EDMCP)与距离几何问题(DGP)的复杂度差异。博客还详细分析了DGP的NP难性及其对实际应用的影响,并提出了应对这一挑战的可能方法。这些内容不仅深化了对距离几何理论的理解,也为工程和应用领域提供了重要参考。原创 2025-08-10 10:36:13 · 22 阅读 · 0 评论 -
22、距离几何中的开放研究领域
本博客深入探讨了距离几何中的多个开放研究领域,包括不同范数下的距离几何问题(DGP)、区间DGP、等距嵌入、矩阵补全以及无邻接信息的DGP问题。重点分析了刚性的组合特征、欧几里得距离矩阵补全的计算复杂度、实现数量的先验估计以及无分配DGP的研究现状与挑战。通过关联这些研究领域,提出了未来的研究方向,如开发纯组合算法、复杂度分析、估计方法创新与高效算法设计,旨在推动距离几何理论与应用的发展,为无线通信、生物医学等领域提供理论支持。原创 2025-08-09 09:39:24 · 17 阅读 · 0 评论 -
21、斯塔克尔伯格领导者/追随者模型与距离几何研究
本博文探讨了斯塔克尔伯格领导者/追随者模型与距离几何(Distance Geometry)的理论基础及其应用。首先介绍了斯塔克尔伯格层级博弈模型,其中参与者按顺序行动并具有领导者与追随者的双重身份,讨论了其在顺序生产等场景的应用及未来研究方向。接着详细阐述了距离几何的基本概念、历史发展、问题变体以及在多个领域的应用,如网络同步、无线定位、蛋白质结构分析和机器人运动分析。此外,还总结了距离几何在大数据分析中的作用,包括多维尺度分析(MDS)和约翰逊-林登施特劳斯引理等关键技术。原创 2025-08-08 11:43:05 · 33 阅读 · 0 评论 -
20、城市交通优化与Stackelberg模型深度解析
本文深入解析了城市交通优化问题与Stackelberg博弈模型的理论基础及其相互关联。针对城市交通优化,探讨了其作为双层优化问题的建模方法及现有求解技术的局限性,并指出未来研究方向。关于Stackelberg模型,详细介绍了其基本概念、推广形式及在交通等领域的应用潜力。文章进一步结合两者,提出了将Stackelberg模型应用于城市交通管理策略设计的前景与挑战,为未来研究提供了方向。原创 2025-08-07 09:41:29 · 22 阅读 · 0 评论 -
19、城市交通优化问题解析
本文深入解析了城市交通优化中的关键问题,包括公交网络设计、频率优化、快速公交(BRT)调度以及考虑重新路由的交通信号优化。每类问题均有详细的数学模型、现有方法、开放挑战及未来研究方向分析,并通过对比与联系总结,展示了城市交通系统优化的复杂性与协同潜力。原创 2025-08-06 09:27:55 · 20 阅读 · 0 评论 -
18、多处理器调度与城市交通优化问题研究
本文探讨了多处理器调度和城市交通优化这两个复杂的问题。在多处理器调度方面,提出了新的混合整数规划模型(MIP)来解决具有通信延迟的调度问题,并通过测试实例验证了模型的有效性。研究还指出了未来需要解决的开放性问题,如任务图的析取约束表征等。在城市交通优化方面,重点分析了公交路线网络设计、快速公交系统调度和交通信号控制问题,并提供了数学模型和解决方案,包括启发式和元启发式方法。文章总结了现有研究的成果与不足,并展望了未来结合人工智能和大数据分析技术改善系统效率的潜力。原创 2025-08-05 13:38:35 · 16 阅读 · 0 评论 -
17、新型MSPCD混合整数规划模型:高效调度的解决方案
本文介绍了一种针对多处理器系统通信延迟(MSPCD)问题的新型混合整数规划(MIP)模型,通过模型简化、有效割和边界的引入,大幅减少了变量和约束数量,提高了求解效率。实验结果表明,该模型在中规模和大规模实例中均展现出比现有模型更好的性能,具有显著的理论和实际应用价值。原创 2025-08-04 10:19:05 · 31 阅读 · 0 评论 -
16、车辆路径问题与多处理器调度问题解析
本文详细解析了车辆路径问题(VRP)的多种变体,包括随机需求下的成本计算、库存路径问题(IRP)、生产路径问题(PRP)和船舶路径问题(SRP),并探讨了它们在实际应用中的特点和解决思路。同时,文章还深入分析了多处理器调度问题与通信延迟(MSPCD)的模型、优化方法及应用领域,并对相关研究的未来发展方向进行了展望。原创 2025-08-03 14:22:39 · 35 阅读 · 0 评论 -
15、车辆路径问题的变体与公式化
本文深入探讨了车辆路径问题(Vehicle Routing Problem, VRP)的多种变体,包括基本VRP、随机需求问题(VRPSDs)、动态问题(DVRPs)、弧路由问题(如CARP和CPP)以及定位路由问题(LRP)。文章详细分析了各类问题的约束条件、目标函数及实际应用场景,并讨论了求解方法如精确算法、启发式算法与实时调整策略。此外,还展望了未来研究趋势,包括多目标优化、新兴技术融合及跨领域应用拓展,为相关领域的研究者和实践者提供了全面的参考。原创 2025-08-02 15:22:02 · 22 阅读 · 0 评论 -
14、车辆路径问题的变体与公式化
本文详细介绍了车辆路径问题(VRP)的多种变体及其数学公式化表达,包括基本VRP、同时取货和送货的VRP、带回程取货的VRP、按需接送VRP等。文章还探讨了绿色车辆路径问题(GVRP)、团队定向问题(TOP)以及带利润的车辆路径问题(VRPPs)的实际应用与求解流程。通过对比不同变体的特点与适用场景,为解决现实中的物流配送、环保运输及复杂调度问题提供了理论依据与方法支持。原创 2025-08-01 15:50:34 · 24 阅读 · 0 评论 -
13、车辆路径问题的变体与公式化解读
本文详细解读了车辆路径问题(VRP)及其多个重要变体,包括带容量限制的CVRP、开放式路径问题OVRP、带时间窗的VRPTW、多仓库MDVRP以及取货和送货问题。通过多种数学公式化方法的介绍,如车辆流模型、商品流模型和集合划分模型,深入探讨了问题建模的核心逻辑。同时,文章总结了求解VRP的主要方法,如启发式与元启发式算法,并结合实际应用案例分析了VRP在物流、公交调度和垃圾收集等领域的广泛用途。最后,文章展望了未来在人工智能与多目标优化推动下VRP研究的发展方向。原创 2025-07-31 13:21:00 · 27 阅读 · 0 评论 -
12、供应链规划中的供需选择与绿色供应链问题探讨
本文探讨了供应链规划中的供需选择问题以及绿色供应链中的碳排放约束库存批量规划问题。重点分析了多供应商多需求场景下的优化决策,并结合动态批量规划模型、多源供应模式、双模式生产策略以及碳交易政策,讨论了碳排放对运营决策的影响。此外,文章还概述了车辆路径问题(VRP)的主要变体及其在物流管理中的应用。研究指出,这些优化问题大多属于NP难问题,需借助数学规划、启发式算法及并行计算等方法加以解决。原创 2025-07-30 13:07:30 · 22 阅读 · 0 评论 -
11、供应链规划中的供需选择问题解析
本文深入解析了供应链规划中的供需选择问题,重点讨论在不确定需求和不可靠供应商情境下的供应商选择策略。文章涵盖单周期库存规划、不同成本函数和折扣结构对供应商选择的影响,以及不可靠供应商的交付风险。此外,还探讨了集成经济批量规模和供应商选择、具有凹采购成本的多供应商报童问题,以及全有或全无供应商可靠性等开放问题。最后,文章拓展到组合供应商和需求选择问题,包括动态多周期和单周期不确定需求下的供需决策模型及其复杂性。原创 2025-07-29 09:47:10 · 54 阅读 · 0 评论 -
10、供应链规划中的供需选择问题解析
本文深入解析了供应链规划中的需求选择和供应商选择问题,重点探讨了经济批量规划(ELSP)、订单选择、市场选择以及单周期和多周期采购规划的核心模型与求解方法。文章还讨论了多个开放性问题,如相关客户需求、特定客户短缺成本、非正态需求等情形下的挑战,并结合实际应用场景,分析了各类问题在制造业、定制化生产、多元化经营及零售行业中的实践意义。通过优化供应链决策,企业可有效控制成本、提升利润与运营效率。原创 2025-07-28 10:55:56 · 43 阅读 · 0 评论 -
9、供应链规划中的供需选择问题与电动汽车充电站优化布局
本文探讨了供应链规划中的供需选择问题以及电动汽车充电站的优化布局。首先,围绕供应链规划,详细分析了基于无限与有限生产率的EOQ模型和选择性新闻vendor模型,并讨论了市场选择策略。随后,聚焦电动汽车充电站优化布局,介绍了基于流量捕获、多种因素规划、需求预测等方法,并总结了不同研究方法的适用场景。最后,文章指出供应链规划与充电站布局之间存在密切关联,提出了协同优化的必要性。通过综合考虑多个因素并采用合适的模型与算法,可以实现资源最优配置与效益最大化。原创 2025-07-27 13:50:46 · 19 阅读 · 0 评论 -
8、电动汽车充电站最优选址问题:模型与挑战
本文探讨了电动汽车充电站的最优选址问题,涵盖了需求预测方法、选址模型以及当前面临的主要挑战。文章分析了基于用户偏好、交通流量和车辆特性的需求预测方法,并比较了点需求选址模型和流量覆盖模型的应用。同时,文章指出在用户与供应商合作、可靠需求预测、政府干预影响以及可再生能源集成等方面仍存在挑战,并提出了相应的应对策略,旨在推动电动汽车充电基础设施的可持续发展。原创 2025-07-26 10:40:23 · 32 阅读 · 0 评论 -
7、新型统计鲁棒估计器与电动汽车充电站选址问题解析
本文介绍了两种统计鲁棒估计器——最小截尾平方(LTS)和惩罚截尾平方(PTS)的基本原理、优缺点及其计算方法,包括Fast-PTS和ε-不敏感PTS(IPTS)等改进算法。同时,结合电动汽车充电站选址问题,分析了鲁棒估计器在实际问题中的应用价值。LTS具有高崩溃点但计算效率低,而PTS通过引入惩罚机制有效处理异常值和掩蔽问题,IPTS则结合支持向量机思想,提高了计算效率和鲁棒性。此外,还讨论了PTS方法的未来研究方向,包括鲁棒性的理论研究、渐近性质的推导以及大数据场景下的计算优化策略。原创 2025-07-25 10:37:24 · 22 阅读 · 0 评论 -
6、新型统计稳健估计器及相关问题探讨
本文探讨了统计学中新型稳健估计器及相关问题,重点介绍了一种新的多元数据离群值检测方法LTED。该方法基于L1-中位数和最小协方差行列式思想,在稳健性和效率方面表现出色,尤其适用于高维数据。同时,文章还比较了LTED与MCD、PCOut等现有方法的性能,并讨论了其在计算复杂度和应用上的优劣。此外,稳健回归中的惩罚修剪平方(PTS)方法也被引入,作为处理高杠杆离群值问题的新思路。文章最后提出了LTED方法的开放性问题和未来研究方向,为统计稳健估计领域的发展提供了重要参考。原创 2025-07-24 11:28:17 · 25 阅读 · 0 评论 -
5、新型统计稳健估计器及相关问题探讨
本文探讨了新型统计稳健估计器在多元数据环境下的应用,重点包括稳健位置估计、协方差估计和多元回归方法。文章介绍了稳健统计的基本理论特性,如高崩溃点、有界影响函数、渐近正态性、效率和等变性,并提出基于运筹学技术的新方法。通过将多元最小修剪绝对偏差(LTAD)估计重新表述为混合整数线性规划(MILP)并转化为线性规划(LP)求解,新方法在受污染数据下表现出良好的稳健性和效率。同时,文章还提出了稳健协方差估计和稳健多元回归的新优化问题及其迭代求解策略,实验验证了其优于传统方法的性能。最后指出了未来研究方向,包括算法原创 2025-07-23 10:42:46 · 20 阅读 · 0 评论 -
4、社交网络中的影响力优化问题解析
本文探讨了社交网络中影响力优化的核心问题与研究进展,包括影响力传播期望的近似计算、主动交友策略、谣言传播控制与源检测方法,以及相关影响力传播模型的应用与挑战。文章还展望了未来的研究方向,如算法效率提升、复杂网络处理、主动交友优化和谣言阻断技术的进一步发展。原创 2025-07-22 10:51:17 · 20 阅读 · 0 评论 -
3、社交影响优化问题概述
本文深入探讨了在线社交网络中的社交影响优化问题,重点分析了信息扩散的经典模型——独立级联(IC)模型和线性阈值(LT)模型,以及影响最大化问题的理论基础与求解方法。文章综述了当前主流的近似算法和启发式优化策略,并指出了其优势与局限性。同时,文章展望了未来研究方向,包括多目标优化、动态社交网络建模、隐私保护等,并探讨了机器学习和跨学科研究在该领域应用的潜力。通过实际案例分析,展示了社交影响优化在现实场景中的应用价值。原创 2025-07-21 16:27:44 · 17 阅读 · 0 评论 -
2、优化理论与算法中的开放性问题与挑战
本文探讨了优化理论与算法中的多个开放性问题与挑战,涉及非线性优化中的凸性问题、随机指数凹优化、连续全局优化以及元启发式方法等相关问题。通过分析这些问题的理论背景与实际应用影响,提出了应对这些挑战的可能途径,包括理论研究、算法设计和数据驱动方法。文章展望了未来在量子计算和人工智能背景下优化领域的发展潜力,并强调了跨学科合作的重要性。原创 2025-07-20 09:18:16 · 24 阅读 · 0 评论 -
1、优化、数学与数据科学领域的前沿探索
本文介绍了优化、数学与数据科学领域的前沿研究进展,重点探讨了Deucalion暑期学院(DSI)作为研究交流平台的背景及其活动形式。文章涵盖了多个重要研究主题,包括数据科学、物流与交通规划、双级编程与博弈论、几何问题以及优化算法等领域,分析了这些主题的关联性与实际应用价值,并展望了未来研究的发展方向,如跨领域融合、算法创新和实际应用验证等。原创 2025-07-19 09:16:13 · 17 阅读 · 0 评论