用scikit learn来创造训练的数据

本文通过代码展示了如何利用scikit learn库创建虚拟数据进行线性回归训练。通过调整noise参数,观察数据点在可视化中的离散程度,强调了noise值增加对数据分布的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基础入门的知识,我就不重复造轮子了。
今天看了一篇,写的不错,推荐给大家,我下面的例子也是根据这篇博客写的完整例子
地址:https://www.jianshu.com/p/685b625679f0

直接上代码,想看代码详细解释的,看上面的博客。

(1)创建虚拟数据,用函数来建立100个样本,有一个特征,一个目标,这样比较方便可视化。noise越大的话,点就会越来越离散。这里noise=10。

#导入模块
#
from __future__ import print_function
#导入数据,导入datasets
from sklearn import datasets
#导入画图模块
import matplotlib.pyplot as plt

#创建虚拟数据-可视化
#创建虚拟数据,用函数来建立100个样本,有一个特征,一个目标,这样比较方便可视化。noise越大的话,点就会越来越离散。
x,y = datasets.make_regression(n_samples=100,n_features=1,n_targets=1,noise=10)
#用scatter的形式来输出结果
plt.scatter(x,y)
plt.show()
如图:


(2)创建虚拟数据,用函数来建立100个样本,有一个特征,一个目标,这样比较方便可视化。noise越大的话,点就会越来。这里noise=50。

#导入模块
#
from __future__ import print_function
#导入数据,导入datasets
from sklearn import datasets
#导入画图模块
import matplotlib.pyplot as plt

#创建虚拟数据-可视化
#创建虚拟数据,用函数来建立100个样本,有一个特征,一个目标,这样比较方便可视化。noise越大的话,点就会越来越离散。
x,y = datasets.make_regression(n_samples=100,n_features=1,n_targets=1,noise=50)
#用scatter的形式来输出结果
plt.scatter(x,y)
plt.show()


可以看到用函数生成的Linear Regression用的数据。noise越大的话,点就会越来越离散,例如noise由10变为50。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值