基础入门的知识,我就不重复造轮子了。
今天看了一篇,写的不错,推荐给大家,我下面的例子也是根据这篇博客写的完整例子
地址:https://www.jianshu.com/p/685b625679f0
今天看了一篇,写的不错,推荐给大家,我下面的例子也是根据这篇博客写的完整例子
地址:https://www.jianshu.com/p/685b625679f0
直接上代码,想看代码详细解释的,看上面的博客。
(1)创建虚拟数据,用函数来建立100个样本,有一个特征,一个目标,这样比较方便可视化。noise越大的话,点就会越来越离散。这里noise=10。
#导入模块
#
from __future__ import print_function
#导入数据,导入datasets
from sklearn import datasets
#导入画图模块
import matplotlib.pyplot as plt
#创建虚拟数据-可视化
#创建虚拟数据,用函数来建立100个样本,有一个特征,一个目标,这样比较方便可视化。noise越大的话,点就会越来越离散。
x,y = datasets.make_regression(n_samples=100,n_features=1,n_targets=1,noise=10)
#用scatter的形式来输出结果
plt.scatter(x,y)
plt.show()
如图:
(2)创建虚拟数据,用函数来建立100个样本,有一个特征,一个目标,这样比较方便可视化。noise越大的话,点就会越来。这里noise=50。
#导入模块
#
from __future__ import print_function
#导入数据,导入datasets
from sklearn import datasets
#导入画图模块
import matplotlib.pyplot as plt
#创建虚拟数据-可视化
#创建虚拟数据,用函数来建立100个样本,有一个特征,一个目标,这样比较方便可视化。noise越大的话,点就会越来越离散。
x,y = datasets.make_regression(n_samples=100,n_features=1,n_targets=1,noise=50)
#用scatter的形式来输出结果
plt.scatter(x,y)
plt.show()
可以看到用函数生成的Linear Regression用的数据。noise越大的话,点就会越来越离散,例如noise由10变为50。