聚类算法之K-means算法

本文介绍了K-means聚类算法的原理,包括聚类定义、相似度计算方法如欧式距离和曼哈顿距离,以及K-means的优缺点、对初始质心敏感的问题和K-means++的改进。此外,讨论了K值选择、K-means在处理异常点的局限性及其在大数据集上的效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

关注微信公众号【Microstrong】,我写过四年Android代码,了解前端、熟悉后台,现在研究方向是机器学习、深度学习!一起来学习,一起来进步,一起来交流吧!


本文同步更新在我的微信公众号里,地址:https://mp.weixin.qq.com/s?__biz=MzI5NDMzMjY1MA==&mid=2247483987&idx=1&sn=6df96c39e5c1c055a6823c09afea354e&chksm=ec6533d6db12bac05efa7229f4812ae773f80d2970f023506c96fb0bab8e7949df5bb207a7a8&scene=0#rd


目录:

(1)      理解相似度度量的各种方法与相互联系(熟悉闵可夫斯基距离,其他作为了解)

(1)      掌握K-means聚类的思路和使用条件

 

(一)  聚类的定义

聚类就是对大量未知标注的数据集,按数据的内在相似性将数据集划分为多个类别,使类别内的数据相似度较大类别间的数据相似度较小。聚类是无监督学习。

 

(二)  相似度、距离计算方法总结

相似度跟距离是相反的概念。如果两个样本Xi与Xj ,它们的距离比较大,那么它们的相似度是比较小的。总之,我们有了相似度就能度量距离,有了距离就能度量相似度。

1)闵可夫斯基距离

给定样本Xi = (Xi1;Xi2;Xi3;……Xin)与Xj=(Xj1;Xj2;Xj3;……Xjn),最常用的是“闵可夫斯基距离”,公式如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值