Git clone
GitHub - THUDM/ChatGLM3: ChatGLM3 series: Open Bilingual Chat LLMs | 开源双语对话语言模型
查看cuda版本
CUDA(Compute Unified Device Architecture)是NVIDIA公司开发的一个平行计算平台和编程模型,它允许开发者利用NVIDIA的GPU(图形处理单元)来进行通用计算,这种计算通常与图形渲染无关。通过使用CUDA,开发者可以将GPU作为强大的并行处理器,用于执行复杂的计算任务,这在科学计算、数据分析、机器学习等领域非常有用。
CUDA提供了API(应用程序编程接口),支持多种编程语言,如C、C++和Python等,使得开发者能够较为容易地编写出能在GPU上运行的并行程序。使用CUDA编写的程序可以在支持CUDA的NVIDIA GPU上运行,从而实现计算任务的加速。
CUDA通过以下方式工作:
1. 内核(Kernels):在CUDA中,内核是并行执行的函数,它在GPU上为每个数据元素执行。开发者可以定义内核来处理大量的数据。
2. 内存管理:CUDA提供了专门的内存管理功能,允许开发者控制数据在GPU和主机(CPU)之间的传输。
3. 线程层次结构:CUDA中的并行执行模型是基于线程层次结构的,包括线程网格(grid)、线程块(block)和线程(thread)。
4. 同步和通信:CUDA提供了线程间的同步和通信机制,使得开发者可以控制线程的行为和数据的共享。
CUDA是高性能计算领域中一个非常重要的技术,它使得许多计算密集型任务能够通过GPU加速,从而大幅提高计算效率。
(以上信息来自智谱清言的回答)
ChatGLM通过PyTorch支持CUDA计算加速,如果你的GPU支持cuda,下面安装PyTorch的时候,请安装支持CUDA的PyTorch版本。
要查看CUDA版本,可以:
CMD中执行:nvidia-smi
安装Python3
ChatGLM中大量代码使用python编写,需要安装Python3。
官方下载最新windows安装包安装即可。
安装PIP
Pip是Python install package的简写,python的库通过pip命令安装。
安装了Python3后,原则上就已经安装好pip了。如果没有安装,可以安装Conda,Conda中也集成了pip。
安装PyTorch
PyTorch是python支持机器学习的一个库。Pytorch支持Nvidia的GPU的CUDA来计算,也支持CPU来计算,但肯定用GPU比CPU计算更好。
PyTorch官方提供了PyTorch安装指导,网址如下:
不同的操作系统,不同的包,不同的计算平台,安装命令也不同。
在上面的页面中,按你自己的情况选择操作系统、Package、编程语言和计算平台后,会生成一条安装命令。在CMD中执行这条命令就会安装,安装过程会下载whl包,大约2.5GB。
注:whl格式本质上是一个压缩包,里面包含了py文件,以及经过编译的pyd文件。可以在不具备编译环境的情况下,选择合适自己的Python环境进行安装。说白了,.whl就是python的压缩包。目前wheel被认为是Python的二进制包的标准格式
安装后,可以验证一下,是否安装成功。在CMD中输入
python
切换到python环境。
然后依次输入下面的代码:
import torch
x = torch.rand(5,3)
print(x)
输出应类似于:
tensor([[0.7522, 0.4874, 0.5922],
[0.7667, 0.7001, 0.3312],
[0.8241, 0.3392, 0.6829],
[0.5461, 0.8977, 0.5320],
[0.8009, 0.4389, 0.7881]])
安装PyTorch及验证见下图: