HANA通过时间筛选条目时的SQL调优

本文详细记录了一次SQL查询优化的过程,通过分析和实验,发现在使用add_seconds函数与数据库时间进行比较时存在性能瓶颈。经过调整,将时间格式化后再进行比较,成功将执行时间从800ms至1s降低到2ms。优化后的SQL语句显著提高了查询效率,揭示了在处理时间比较时的潜在优化策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天查看expensive statement的时候发现了一些监控语句,执行时间大于1秒钟,语句如下:

select count (*) from ME_WIP.ACTIVITY_LOG
where DATE_TIME > add_seconds(localtoutc(now()), -1800)

这条语句的目标是查看最近30分钟生成的日志条目数。重复试了几次,执行时间在800ms到1秒钟上下。

这条语句不复杂,似乎没什么调优空间。先尝试直接执行 select count (*) from ME_WIP.ACTIVITY_LOG,结果发现只需要1ms,说明这个where语句还是有相当大的改进空间的。

再执行 select add_seconds(localtoutc(now()), -1800) from dummy
这条语句在300us左右,说明add_seconds这条计算时间的函数和localtoutc这条将时间标准化为UTC的函数都没有性能问题。
再尝试:select count (*) from ME_WIP.ACTIVITY_LOG where DATE_TIME > ‘20220307050101’
这种写法是直接固定时间的时分秒,结果发现只需要2ms。
通过以上信息,说明问题点在于使用add_seconds与条目中的时间做比较时的优化,可以尝试通过to_varchar函数将add_seconds中的时间格式进行转化。
基于以上信息,把语句改为这样后执行:

select count (*) from ME_WIP.ACTIVITY_LOG 
where DATE_TIME > 
(select to_varchar(add_seconds(localtoutc(now()), -1800),'YYYYMMDDHHMMSS') from dummy)

执行时间为2ms,比之前800ms至1s的执行时间获得大幅提高。
关于原因,目前的猜测是add_seconds所返回的时间可能是比较复杂的,格式化之后可以进行更快速的比较。

通过比较执行计划可以看到区别:
优化前
优化后
可以看到,第一种写法会把DATE_TIME中的条目进行LONGDATE转化后进行比较,对于数据本身的调整将会严重影响执行效率,而第二种是直接进行比较,效率自然也高得多。执行计划的对比也佐证了之前的猜测。

至此,语句优化的方式和原因都已找到。这种情况还是比较普遍的,在查询最近几天,几小时的条目时,这样潜在的调优点都会存在。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值