多重比较你用对了吗?

多重比较在统计分析中用于确定方差分析后哪些样本平均数之间存在显著差异。由于多次比较可能导致错误概率增加,因此需要使用如LSD、Sidak、Bonferroni、Tukey和Scheffe等方法。这些方法各有优缺点,适用于不同场景。例如,Bonferroni适合少量组别,Tukey适用于样本量相同的组,Scheffe则适合样本量不等或复杂比较。了解这些方法有助于正确解读和报告实验结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

关注“心仪脑”查看更多脑科学知识的分享。

多重比较multiple comparisons

是指方差分析后对各样本平均数间是否有显著差异的假设检验的统称。方差分析只能判断各总体平均数间是否有差异,多重比较可用来进一步确定哪两个平均数间有差异,哪两个平均数间没有差异。

为什么不能用t检验而用多重比较了?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值