ssprompt:一个LLM Prompt分发管理工具

🌟前言

自从OpenAI掀起了一轮新的AI革命,国内外众多玩家入场接受时代洗礼,一时间LLM相关技术井喷,而提示工程( prompt engineering )就在其中。
它就像是为大语言模型(LLM)设计的"语言游戏"。通过这个"游戏",我们可以更有效地引导 LLM 来处理问题。在真正的通用智能到来前,基于当前的LLM范式,要充分发挥LLM的优势,Prompt设计越来越复杂化,进一步Prompt的代码化,模块化会越发明显,同时写prompt将会成为AI时代人的基本技能。
基于此,我构思创作了ssprompt,希望每个人都能利用Prompt,享受AI时代红利

🔔ssprompt介绍

ssprompt是一个Prompt分发管理工具,定义了一套Prompt分发规则
支持创建Prompt工程和拉取Prompt Hub上对应Prompt的工程文件到本地工程

image.png

注:以下为 0.1.0 第一版ssprompt的内容介绍,项目还在持续完善,如有疏漏或不足之处请包涵了解,谢谢~

ssprompt show

命令介绍

  • ssprompt new -> 新建一个新的Prompt工程,指定工程目录,Prompt类型等参数
  • ssprompt init -> 基于当前目录,引导创建一个Prompt工程
  • ssprompt add -> 添加一个不同Prompt类型和相关依赖到metafile,并生成相应的Prompt工程目录(工程配置文件)
  • ssprompt show -> 展示本地Prompt工程的基本信息(metafile)或拉取PromptHub上对应工程的信息
  • ssprompt pull -> 拉取远端工程到本地项目中,相关工程可以引用Prompt文件或代码
  • ssprompt list -> 展示当前版本ssprompt支持的命令
  • ssprompt about -> 展示ssprompt的介绍和版本信息
  • ssprompt version -> 展示ssprompt的版本信息

更多命令参数详情,请使用ssprompt [command] -h进一步了解

Metafile介绍

ssprompt通过定义prompt工程的Meta文件来约束管理Prompt分发规则和内容
ssprompt关于prompt定义了四种类型的Prompt

  • Text
  • Json
  • Yaml
  • Python

可以按需生成对应的Prompt上传到PromptHub进行分发
metafile以Prompt工程名称命名,如prompt_project.yaml ,是ssprompt管理Prompt分发的关键

注:上述类型结合参考了langchain和haystack

#Prompt工程基础信息
meta:
  name
### 如何使用LLM Prompt创建对话式学习应用 #### 构建方法 为了有效地构建对话式学习工具,理解并遵循一系列指导原则至关重要。设计用于教育目的的提示时应考虑清晰度、简洁性和互动性[^1]。 对于实际的应用开发,选择合适的框架和技术栈同样重要。例如,在Python环境中,Streamlit是一个非常适合快速原型制作的选择,特别是当目标是实现具有直观用户界面的小型项目时[^3]。通过结合强大的大型语言模型(LLMs)作为后台处理核心,前端则由Streamlit负责呈现给用户的交互体验,这样的组合能显著提升用户体验的质量。 #### 示例教程 下面给出的是一个简化版的教学流程,旨在说明如何利用上述提到的技术建立一个基础版本的学习辅助平台: ```python import streamlit as st from langchain import LLM # 假设这是某个具体的LLM库 def main(): st.title("我的个人导师") user_input = st.text_input("请输入您的问题:") if st.button('提交'): response = get_response_from_llm(user_input) st.write(response) @st.cache_data def get_response_from_llm(query): llm_instance = LLM() # 初始化LLM实例 result = llm_instance.generate(prompt=query) # 使用查询字符串生成回复 return result['text'] if __name__ == "__main__": main() ``` 这段代码展示了如何集成Streamlit与假设中的`langchain.LLM`类来搭建简易问答系统的基础架构。这里的关键在于定义了一个名为`get_response_from_llm()`的功能函数,该函数接收来自用户的输入并通过调用预训练的语言模型获取相应的回应;之后再将这个回应显示出来供用户查看[^4]。 #### 最佳实践 - **保持简单易懂**:无论是针对学生的课程材料还是面向教师的操作指南,都应该力求做到表述直白而不失专业。 - **持续改进Prompt质量**:定期评估现有Prompts的效果,并据此调整优化策略,比如引入更多样化的例子或改变提问的方式等[^2]。 - **注重反馈机制建设**:鼓励用户提供关于交流过程的感受和建议,这有助于发现潜在的问题所在并及时作出相应修改.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值