昇思25天学习打卡营第4天|数据集Dataset

数据集 Dataset

介绍

之前说过,MindSpore是基于Pipeline,通过Dataset和Transformer进行数据处理。Dataset在其中是用来加载原始数据的。mindSpore提供了数据集加载接口,可以加载文本、图像、音频等,同时也可以自定义加载接口。此外还提供了预加载的数据集,可直接使用。

环境配置

import numpy as np
from mindspore.dataset import vision
from mindspore.dataset import MnistDataset, GeneratorDataset
import matplotlib.pyplot as plt

加载dataset

依然使用之前的图片及其标签数据集Mnist

train_dataset = MnistDataset("MNIST_Data/train", shuffle=False)

数据集迭代

数据集加载后,一般使用迭代的方式获取数据,再送入神经网络中训练。
访问的数据类型默认为Tensor,可以设置为Numpy output_numpy=True

def visualize(dataset):
    figure = plt.figure(figsize=(4, 4))
    cols, rows = 3, 3

    plt.subplots_adjust(wspace=0.5, hspace=0.5)

	# 这里进行每个数据点的迭代处理
    for idx, (image, label) in enumerate(dataset.create_tuple_iterator())
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值