1,CUDA编程的基本概念
对于一个2-dim的block(D_x, D_y) ,既指的是二维的平面的block模型;
gridDim: 这个变量包含网格的维度
blockIdx: 这个变量包含了网格中的线程块索引(0~gridDim-1)
blockDim: 这个变量包含了线程块的维度
threadIdx: 这个变量包含了线程块中的线程索引(0~blockDim-1)
您似乎对 CUDA 的线程层次结构有些困惑;简而言之,对于cuda核,将有 1 个网格(我总是将其可视化为 3 维立方体)。它的每个元素都是一个块,因此一个网格声明为 dim3 grid(10, 10, 2);将有 10102 总块。反过来,每个块都是线程的 3 维立方体。
A:通过 **dim3 blockSize(256); dim3 gridSize((N + blockSize.x - 1) / blockSize.x);**定义GPU并行运算的模型矩阵,可以是二维矩阵,也可以是三维矩阵;
B:通过:// (获取全局索引)int index = threadIdx.x + blockIdx.x * blockDim.x;这种用A的矩阵的方式,来获取共享变量中的数据,然后在进行加减z[i] = x[i] + y[i];,这种索引可以是二位索引,也可以是三维索引;因为是在kenal方法中,所以这种加法是可以直接进行并行运算的。