CUDA编程基础:线程标识符计算,以及并行运算原理,关于GPU并行运算索引的通俗讲解

本文介绍了CUDA编程的基础概念,包括2-dim线程块模型、线程标识符计算以及内存限制。CUDA编程模型通过dim3定义线程块和网格尺寸,利用threadIdx和blockIdx计算全局索引,实现GPU并行运算。同时,文章讨论了不同维度块中的线程ID计算,并提供了GPU加法和转置操作的代码验证案例链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1,CUDA编程的基本概念

对于一个2-dim的block(D_x, D_y) ,既指的是二维的平面的block模型;
gridDim: 这个变量包含网格的维度
blockIdx: 这个变量包含了网格中的线程块索引(0~gridDim-1)
blockDim: 这个变量包含了线程块的维度
threadIdx: 这个变量包含了线程块中的线程索引(0~blockDim-1)

您似乎对 CUDA 的线程层次结构有些困惑;简而言之,对于cuda核,将有 1 个网格(我总是将其可视化为 3 维立方体)。它的每个元素都是一个块,因此一个网格声明为 dim3 grid(10, 10, 2);将有 10102 总块。反过来,每个块都是线程的 3 维立方体。

A:通过 **dim3 blockSize(256); dim3 gridSize((N + blockSize.x - 1) / blockSize.x);**定义GPU并行运算的模型矩阵,可以是二维矩阵,也可以是三维矩阵;
B:通过:// (获取全局索引)int index = threadIdx.x + blockIdx.x * blockDim.x;这种用A的矩阵的方式,来获取共享变量中的数据,然后在进行加减z[i] = x[i] + y[i];,这种索引可以是二位索引,也可以是三维索引;因为是在kenal方法中,所以这种加法是可以直接进行并行运算的。

2,内存限制

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鼾声鼾语

感谢您的支持鼓励!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值