全连接层和卷积层最终应用在网络上的不同之处

本文阐述了全连接层中predict阶段对inputshape的一致性要求,以及卷积层灵活性及其对预测效果的影响。重点强调了训练和预测阶段输入形状调整的注意事项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

全连接层:predict的input shape必须与train时的input shape一致
卷积层:predict的input shape可以与train时的input shape不一致,可更改,但是相差较大的话,预测效果会打折扣。因为train得到的特征是固定的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值