一、ORM 框架简介
对象-关系映射(Object/Relation Mapping,简称ORM),是随着面向对象的软件开发方法发展而产生的。面向对象的开发方法是当今企业级应用开发环境中的主流开发方法,关系数据库是企业级应用环境中永久存放数据的主流数据存储系统。对象和关系数据是业务实体的两种表现形式,业务实体在内存中表现为对象,在数据库中表现为关系数据。内存中的对象之间存在关联和继承关系,而在数据库中,关系数据无法直接表达多对多关联和继承关系。因此,对象-关系映射(ORM)系统一般以中间件的形式存在,主要实现程序对象到关系数据库数据的映射。
1.ORM方法论基于三个核心原则:
简单性:以最基本的形式建模数据。
传达性:数据库结构被任何人都能理解的语言文档化。
精确性:基于数据模型创建正确标准化了的结构。
面向对象是从软件工程基本原则(如耦合、聚合、封装)的基础上发展起来的,而关系数据库则是从数学理论发展而来的,两套理论存在显著的区别。为了解决这个不匹配的现象,对象关系映射技术应运而生。O/R中字母O起源于"对象"(Object),而R则来自于"关系"(Relational)。几乎所有的程序里面,都存在对象和关系数据库。在业务逻辑层和用户界面层中,我们是面向对象的。当对象信息发生变化的时候,我们需要把对象的信息保存在关系数据库中。
当开发一个应用程序的时候(不使用O/R Mapping),可能会写不少数据访问层的代码,用来从数据库保存,删除,读取对象信息,等等。在DAL中写了很多的方法来读取对象数据,改变状态对象等等任务。而这些代码写起来总是重复的。
如果开你最近的程序,看看DAL代码,肯定会看到很多近似的通用的模式。我们以保存对象的方法为例,传入一个对象,为SqlCommand对象添加SqlParameter,把所有属性和对象对应,设置SqlCommand的CommandText属性为存储过程,然后运行SqlCommand。对于每个对象都要重复的写这些代码。 除此之外,还有更好的办法吗?有,引入一个O/R Mapping。实质上,一个O/R Mapping会为你生成DAL。与其自己写DAL代码,不如用O/R Mapping。用O/R Mapping保存,删除,读取对象,O/R Mapping负责生成SQL,你只需要关心对象就好。对象关系映射成功运用在不同的面向对象持久层产品中,
- 一般的ORM包括以下四部分:
一个对持久类对象进行CRUD操作的API;
一个语言或API用来规定与类和类属性相关的查询;
一个规定mapping metadata的工具;
一种技术可以让ORM的实现同事务对象一起进行dirty checking, lazy association fetching以及其他的优化操作。
•ORM:及Object-Relational Mapping,把关系数据库的表结构映射到对象上
•我们先来可能一个例子:
•如果我们从数据库查出来几条数据,需要你在python中表示出来,如果你没有接触过ORM技术,你或许会使用下面的形式来存储这个数据:
[
(1, ‘feng’),
(2, ‘shang’),
(3, ‘huo’),
]
如果你想知道表结构是什么样的,是不是就费劲了,如果你想快速的取出其中的元素,就需要听听ORM的思想了。
数据库中每次查出来的数据都用一个类表示,这个类的属性和数据库中表的字段一一对应。多条数据,就是一个list,每一行数据都是一个类来表示,如下所示:
class User(object):
def __init__(self, id, name):
self.id = id
self.name = name
[
User(1, “feng”),
User(2, “shang”),
User(3, “huo”),
]
当我们需要获得id,或者name的时候,只需要通过循环获取到对象,直接通过user1.id或者user1.name就可以获取到id和name的属性。并且使得数据的存取非常的规范,这样ORM架构应用而生。
以上参考:
作者:俊采星驰_87e0
链接:https://www.jianshu.com/p/0ad18fdd7eed
sqlalchemy使用
安装
pip install SQLALchemy
创始化链接
from sqlalchemy import create_engine
engine = create_engine('mysql://fxq:123456@192.168.100.101/sqlalchemy', echo=True)
# echo = True 显示每条执行的sql语句
创建表格
SQL语句方式
from sqlalchemy import create_engine,MetaData,Table,Column,Integer,String
engine = create_engine("mysql+pymysql://datacenter_test:9n%vtvR633CYcdmm"
"@rm-2ze72mtf4661y9szq.mysql.rds.aliyuncs.com/datacenter_test",echo=True)
"""一、SQL语句创建表格"""
sql = '''create table student(id int not null primary key,name varchar(50),age int,address varchar(100));
'''
conn = engine.connect()
conn.execute(sql)
engine.connect()
ORM方式创建
from sqlalchemy import create_engine,MetaData,Table,Column,Integer,String
engine = create_engine("mysql+pymysql://datacenter_test:9n%vtvR633CYcdmm"
"@rm-2ze72mtf4661y9szq.mysql.rds.aliyuncs.com/datacenter_test",echo=True)
"""以ORM方式创建表格"""
metadata = MetaData(engine)
student = Table("surf",metadata,
Column("id",Integer,primary_key=True),
Column("name",String(50)),
Column("age",Integer),
Column("address",String(100)))
metadata.create_all(engine)
增
创建对象基类,基于基类生成实例,提交到数据库
from sqlalchemy import Column,String,Integer,create_engine
from sqlalchemy.orm import sessionmaker
from sqlalchemy.ext.declarative import declarative_base
"""增删改查"""
# 初始化连接数据库
engine = create_engine("mysql+pymysql://datacenter_test:9n%vtvR633CYcdmm"
"@rm-2ze72mtf4661y9szq.mysql.rds.aliyuncs.com/datacenter_test")
# 创建DBSession
DBSession = sessionmaker(bind=engine)
# 创建session对象
session = DBSession()
# 创建对象基类
Base = declarative_base()
class Student(Base):
__tablename__ = "student"
id = Column(Integer,primary_key=True)
name = Column(String(30))
age = Column(Integer)
address = Column(String(100))
# ---------------------------------增--------------------------------
student1 = Student(id=1001,name="ling",age=25,address="beijing")
student2 = Student(id=1002,name="molin",age=18,address="jiangxi")
student3 = Student(id=1003,name="karl",age=26,address="suzhou")
# 添加到session
session.add_all([student1,student2,student3])
session.commit()
session.close()
查找、修改
from sqlalchemy import Column,String,Integer,create_engine
from sqlalchemy.orm import sessionmaker
from sqlalchemy.ext.declarative import declarative_base
"""增删改查"""
# 初始化连接数据库
engine = create_engine("mysql+pymysql://datacenter_test:9n%vtvR633CYcdmm"
"@rm-2ze72mtf4661y9szq.mysql.rds.aliyuncs.com/datacenter_test")
# 创建DBSession
DBSession = sessionmaker(bind=engine)
# 创建session对象
session = DBSession()
# 创建对象基类
Base = declarative_base()
class Student(Base):
__tablename__ = "student"
id = Column(Integer,primary_key=True)
name = Column(String(30))
age = Column(Integer)
address = Column(String(100))
# ---------------------------------查,改--------------------------------
# session.query(Student) 结果是SQL语句
my_student = session.query(Student).filter_by(name="ling",age=25).first()
my_student.id = 1001
# 修改后提交
session.commit()
my_sdt = session.query(Student).filter(Student.name == "ling" and Student.age==25).all()
print(my_sdt)
print(my_sdt.id)
filter的使用
equals:
query(Student).filter(Student.id == 10001)
not equals:
query(Student).filter(Student.id != 100)
LIKE:
query(Student).filter(Student.name.like(“%feng%”))
IN:
query(Student).filter(Student.name.in_(['feng', 'xiao', 'qing']))
not in
query(Student).filter(~Student.name.in_(['feng', 'xiao', 'qing']))
AND:
from sqlalchemy import and_
query(Student).filter(and_(Student.name == 'fengxiaoqing', Student.id ==10001))
或者
query(Student).filter(Student.name == 'fengxiaoqing').filter(Student.address == 'chengde')
OR:
from sqlalchemy import or_
query.filter(or_(Student.name == 'fengxiaoqing', Student.age ==18))
filter和filter_by的区别
Filter: 可以像写 sql 的 where 条件那样写 > < 等条件,但引用列名时,需要通过 类名.属性名 的方式。
filter_by: 可以使用 python 的正常参数传递方法传递条件,指定列名时,不需要额外指定类名。,参数名对应名类中的属性名,但似乎不能使用 > < 等条件。
当使用filter的时候条件之间是使用“==",fitler_by使用的是"="。
user1 = session.query(User).filter_by(id=1).first()
user1 = session.query(User).filter(User.id==1).first()
删除
删除其实也是跟查询相关的,直接查出来,调用delete()方法直接就可以删除掉。
session.query(Student).filter_by(id=1002).delete()
session.commit()