探索性数据分析:挖掘数据背后的秘密
1. 引言
在数据科学的旅程中,探索性数据分析(Exploratory Data Analysis, EDA)扮演着至关重要的角色。EDA 是数据科学家用来初步理解和分析数据集的关键步骤。通过 EDA,我们可以发现数据中的模式、异常值、结构和特征,从而为进一步的建模和分析打下坚实的基础。本文将详细介绍如何进行 EDA,包括数据摘要、数据可视化、识别异常值、相关性分析和数据转换等方面。
2. 数据摘要
首先,我们需要对数据集有一个基本的了解。数据摘要可以帮助我们快速掌握数据的整体情况。常用的描述性统计量包括均值、中位数、标准差、最小值、最大值和四分位数等。这些统计量可以揭示数据的基本分布特征。
2.1 计算描述性统计量
使用 Pandas 库可以轻松计算这些统计量。假设我们有一个名为 df
的 DataFrame,以下是计算描述性统计量的代码:
import pandas as pd
# 计算描述性统计量
summary_stats = df.describe()
print(summary_stats)
2.2 解读描述性统计量
统计量 | 解释 |
---|---|
count | 每个特征的非空观测值数量 |