10、探索性数据分析:挖掘数据背后的秘密

探索性数据分析:挖掘数据背后的秘密

1. 引言

在数据科学的旅程中,探索性数据分析(Exploratory Data Analysis, EDA)扮演着至关重要的角色。EDA 是数据科学家用来初步理解和分析数据集的关键步骤。通过 EDA,我们可以发现数据中的模式、异常值、结构和特征,从而为进一步的建模和分析打下坚实的基础。本文将详细介绍如何进行 EDA,包括数据摘要、数据可视化、识别异常值、相关性分析和数据转换等方面。

2. 数据摘要

首先,我们需要对数据集有一个基本的了解。数据摘要可以帮助我们快速掌握数据的整体情况。常用的描述性统计量包括均值、中位数、标准差、最小值、最大值和四分位数等。这些统计量可以揭示数据的基本分布特征。

2.1 计算描述性统计量

使用 Pandas 库可以轻松计算这些统计量。假设我们有一个名为 df 的 DataFrame,以下是计算描述性统计量的代码:

import pandas as pd

# 计算描述性统计量
summary_stats = df.describe()

print(summary_stats)

2.2 解读描述性统计量

统计量 解释
count 每个特征的非空观测值数量
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值