- 博客(523)
- 收藏
- 关注
原创 公司数据不泄露,DeepSeek R1本地化部署+web端访问+个人知识库搭建与使用,喂饭级实操教程,老旧笔记本竟跑出企业级AI
1 Ollama PC本地化部署1.1 下载Ollamahttps://ollama.com/目前Ollama支持macOS、Linux、Windows,选择相应的系统,macOS和Windows直接下载,Linux系统需要执行下面命令:curl -fsSL https://ollama.com/install.sh | sh
2025-06-04 15:55:53
779
原创 开口即图!我用Dify+数据库+Echarts搭建了一个能“听懂”人话的数据可视化助手!(含自然语言转SQL)
这次满足大家的需求,我将手把手带你利用dify的工作流编排能力和大型语言模型(LLM),搭建一个能“听懂”我们自然语言指令,自动查询数据库、判断图表类型,并最终生成酷炫Echarts图表的数据可视化助手!
2025-06-04 15:53:02
750
原创 NLP实战 | BERT文本分类及其魔改(附代码)
本文主要介绍了两种文本分类模型:BERT文本分类基础模型,及基于Bert和TextCNN的魔改模型。在作者实际的有关文本分类的工作中取得了F1值超越Bert基础模型近4%的效果。
2025-06-03 17:27:48
537
原创 使用huggingface的Transformer库进行BERT文本分类代码
本文通过huggingface的Transform类进行BERT的文本分类代码训练与验证,数据集采用网上整理包括正向和负向评论的携程网数据,包括数据的加载、创建数据集、划分训练集和验证集、创建模型和优化器、包括训练与验证、模型的训练、模型的预测
2025-06-03 17:24:45
976
原创 一书掌握Transformer!《从零到精通:手把手教你构建最先进的NLP模型》(文末附PDF下载)
ChatGPT红得发紫,强得让人类心悸。但在它的背后,还隐藏着一位真正的大佬。它的名字叫做——Transformer!在大数据和人工智能时代,机器学习 (Machine Learning,ML) 和 深 度 学 习 (DeepLeamning,DL) 已经成为各行各业解决问题的有效方法,自然语言处理 (Natural Language Processing,NLP) 是深度学习的重要应用领域之一。在过去的二十年中,自然语言处理经历了翻天 覆地的变化:从传统的自然语言处理方法 (n-gram 语言
2025-06-01 08:45:00
1484
原创 带你搞懂什么是BERT模型!就这一篇就够了!
BERT是一个预训练的语言表征模型。它强调了不再像以往一样采用传统的单向语言模型或者把两个单向语言模型进行浅层拼接的方法进行预训练,而是采用新的masked language model(MLM),以致能生成深度的双向语言表征。BERT论文发表时提及在11个NLP(Natural Language Processing,自然语言处理)任务中获得了新的state-of-the-art的结果,令人目瞪口呆。
2025-05-30 22:15:18
1369
原创 图解 Transformer 与 MoE 的技术原理 !
Transformer模型自2017年提出以来,通过自注意力机制彻底改变了序列建模领域。它通过并行计算每个位置的语义关联,打破了传统循环神经网络(RNN)的速度瓶颈,成为机器翻译、文本生成等任务的标杆。然而,随着模型规模指数级增长,计算资源消耗与推理延迟问题日益凸显。这促使研究者探索更高效的架构,混合专家模型(MoE)应运而生。本文将从架构设计、工作原理、技术挑战三个维度,深入剖析Transformer与MoE的差异与演进逻辑。
2025-05-30 22:13:40
615
原创 AI大模型 | 2024年AI生成式营销产业研究蓝皮书,附PDF免费下载
生成式AI正在开启营销的新纪元,它通过赋能生产工具,全面提升营销业务流程中的生产力,并重构营销组织生产关系。这一变革不仅限于传统广告和社交媒体营销,还扩展到了电商运营、客户运营和产品创新等新兴领域。
2025-05-29 16:36:09
688
原创 使用Ollama和Langchain动手开发AI搜索问答助手
本文主要介绍如何借助搜索引擎,获取比较新的内容,并对这部分内容的问题进行回答。首先会简单介绍原理,然后是环境准备,代码介绍,最后会通过Chainlit,构造一个完整的可视化Demo。
2025-05-29 16:35:04
537
原创 使用RAG技术构建企业级文档问答系统之QA抽取
从本文开始,将开一个大坑,陆续介绍企业级文档问答系统构建的全流程,以及关键环节的优化手段。重点介绍算法流程。构建一个基础版的RAG是非常简单的,甚至使用扣子、Dify等平台,熟练的情况下都用不了5分钟,即使使用Langchain、LlamaIndex等框架,搭建完整流程,代码也不会超过100行。但基础版的问答效果往往较差。
2025-05-29 16:31:16
871
原创 【大模型新书分享】掌握大语言模型:高级技术、应用、尖端方法和顶尖LLMs,附PDF
本书探讨了NLP的基础知识,如应用、演变、组件和语言模型。它教授数据预处理、神经网络和特定架构如RNNs、CNNs和变压器。它解决了训练挑战,介绍了如生成对抗网络(GANs)、元学习的高级技术,并引入了如GPT-3和BERT的顶级LLM模型。它还涵盖了提示工程。最后,它展示了LLM的应用,并强调了负责任的开发和部署。
2025-05-27 11:49:58
452
原创 Qwen3 本地部署指南:打造完全离线的AI助手
Qwen3 是阿里巴巴 Qwen 团队推出的最新开源大语言模型 (Large Language Model, LLM),它提供了令人印象深刻的性能,同时具备高度模块化和强大的工具调用能力。本指南面向程序员读者,将详细介绍如何在本地机器上部署 Qwen3,无需依赖任何云服务或 API 密钥。
2025-05-27 11:47:00
669
原创 如何在离线的Linux服务器上部署 Ollama,并使用 Ollama 管理运行 Qwen 大模型
这样 Qwen2.5 就算导入成功了,实际上 llama 工具还可对大模型进行量化,量化后的大模型会更加精确,更加节省系统资源,有关量化的信息可自行研究.
2025-05-23 16:29:36
982
1
原创 给大家推荐一本get新技能的书籍,人人都可动手做AI Agent基础入门!!!
可能还有很多小伙伴对这个概念很陌生,今天, 通过新书《动手做AI Agent》为大家科普一下它的来龙去脉。
2025-05-23 16:27:25
672
原创 零门槛上手!本地部署Ollama+OpenWebUI+Deepseek-R1操作指南
Ollama 和 Open WebUI 是两款非常实用的工具,可以帮助用户在本地轻松部署强大的语言模型和智能推理引擎。本篇文章将详细介绍如何零门槛地在本地部署 Ollama 和 Open WebUI,并通过 Deepseek-R1-14b 模型进行高效的推理。
2025-05-21 16:30:02
600
原创 行业大模型实战:基于千问+LangChain构建垂直领域大模型应用:电商场景实际案例
本文将以电商客服投诉信息的结构化处理为例,详细介绍如何基于LangChain框架和开源大语言模型构建垂直领域的智能应用。通过这一实例,我们将展示LangChain如何助力开发者快速构建、迭代和部署大模型应用,实现从非结构化文本到结构化数据的智能转换。
2025-05-21 16:28:11
812
原创 大模型入门书籍 | 《大模型基础》开源分享!附完整版PDF,无偿获取~
由浙江大学DAILY实验室毛玉仁研究员、高云君教授领衔撰写的《大模型基础》教材第一版。这本教材为对大语言模型感兴趣的读者系统地讲解相关基础知识、介绍前沿技术。
2025-05-13 15:09:33
492
原创 【大模型图解】「1 行 LangChain 代码」竟让 10 万份合同 3 分钟审完?
掌握了LangChain,就能用极少的代码完成原本需要团队数天才能做完的工作。香!这工具不整起来,纯属浪费生产力啊!
2025-05-13 14:46:13
693
原创 图解 LangChain 多语言文档处理,通宵达旦只为你打破语言障碍
图解 LangChain 多语言文档处理,通宵达旦只为你打破语言障碍LangChain 就像是一个多语言翻译官,可以帮你打通各种语言文档的沟通桥梁。2. 文本分割2. 语言检测与路由3. 多语言向量化2. 跨语言检索问答注意事项多语言模型比单语言模型体积更大,算力要求高不同语言分词逻辑差异大,记得调整分词器跨语言检索精度可能低于单语言系统评估时需为每种语言建立单独的测试集总结LangChain库是多语言文档处理的利器,可以帮你:掌握了LangChain多语言功能,从此告
2025-05-07 16:27:16
707
原创 一书掌握Transformer!《从零到精通:手把手教你构建最先进的NLP模型》(附PDF下载)
国内第1本Transformer——变形金刚红书如果一定要说未来谁能引领人工智能世界,是Transformer而非chatGPT!编辑推荐★★★★★ChatGPT红得发紫,强得让人类心悸。但在它的背后,还隐藏着一位真正的大佬。它的名字叫做——Transformer!
2025-05-05 15:35:03
761
原创 【图解】LangChain 带你零代码搭建智能客服,工单响应率翻番
2. 内存管理实用功能1. 知识库问答3. 多轮客服对话2. 智能回复生成LangChain 库是快速构建智能应用的强力工具,可以帮你:掌握了这些基础,就算没啥代码经验,也能拼拼搭搭做个智能客服出来。试试看,说不定你的客服响应效率真能翻几倍!大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “”“”等问题热议不断。不如成为,毕竟AI时代,谁先尝试,谁就能占得先机!想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,
2025-04-28 18:01:15
893
原创 【图解】只用 LangChain+SQL,我让老板的财务报表“自己”长出图表!
LangChain+SQL 就像是会魔法的会计师,可以把枯燥的财务数据变成生动的图表和分析报告。2. 自然语言查询2. 自动分析报告2. 异常监测与报警注意事项小心SQL注入,使用LangChain的安全机制,别直接拼SQL敏感数据要加密存储,别裸奔。数据库连接信息藏好点使用OpenAI API要限制token消耗,不然账单会吓死人异常监测建议结合人工复核,别全信AI的判断定期检查自动化流程是否正常,防止"自动故障"变"手动救火"总结LangChain+SQL库是连接自
2025-04-28 17:58:16
749
原创 提升10倍效率大模型的简单原理
停更了两周,我一直在沉浸式学习中,研究AI的各种知识。试验在kimi的帮助下,搭起来一个python的Django项目,我不编码也有7、8年了,因为编码调试会被很多原因中断,很费时间,所以把大部分时间放在建模和设计上,但是不编码总感觉缺点什么,但是有了kimi的辅助,就顺利很多,我又可以编码了,有点小兴奋。其实我仅仅是简单使用,感觉效率比之前提升几倍,如果用好了,看来10倍效率没有问题啊!这一切的背后都是大模型的作用啊,遇事不决问AI已经成为习惯。
2025-04-21 17:28:18
1011
原创 斯坦福大学人工智能图书馆收藏的这本大模型黑书到底有何魔力?
在不到4 年的时间里,Transformer 模型以其强大的性能和创新的思想,迅速在NLP 社区崭露头角,打破了过去30 年的记录。本书将引领你进入Transformer的世界,将讲述不同模型和平台的优势,指出如何消除模型的缺点和问题。《大模型应用解决方案——基于GPT-3、ChatGPT、GPT-4等Transformer架构的自然语言处理》分步展示如何微调GPT-3等预训练模型。图源《大模型应用解决方案——基于GPT-3、ChatGPT、GPT-4等Transformer架构的自然语言处理》
2025-04-16 16:29:09
781
原创 零基础也能看懂的ChatGPT等大模型入门解析!
GPT 对应的是三个关键概念:生成式(Generative)、预训练(Pre-Training)和Transformer。生成式(Generative):是指通过学习历史数据来生成全新的数据。当使用ChatGPT回答问题时,是逐字(或三四个字符一起)生成的。在生成过程中,每一个字(或词,在英文中可能是词根)都可以被称作一个 token。预训练(Pre-Training):是指预先训练模型。
2025-04-14 17:26:55
700
原创 从零开始构建基于ChatGPT的嵌入式(Embedding)本地医疗客服问答机器人模型(看完就会,看到最后有惊喜)
代码全部开源,GitHub地址为:前端完全也能搭建, 前端完全也能搭建, 前端完全也能搭建, 本文中我使用的是后端语言golang,来调用的所有外部接口,但它们均是restful api,所以如果你使用的是其他语言,那么是完全可以替换的,包括nodejs或者直接使用前端请求都是可以实现我的功能的。后面有机会会使用vue3来添加一个页面,现在主要通过postman或者apifox来调试接口,主要为了验证逻辑想法。接下来首先来看看embeddings到底是什么吧可以被应用于以下几种情况。
2025-03-31 22:17:31
615
原创 基于LangChain-Chatchat实现的本地知识库的问答应用-快速上手(检索增强生成(RAG)大模型)
一种利用langchain思想实现的基于本地知识库的问答应用,目标期望建立一套对中文场景与开源模型支持友好、可离线运行的知识库问答解决方案。受的项目和创建的启发,建立了全流程可使用开源模型实现的本地知识库问答应用。本项目的最新版本中通过使用FastChat接入 Vicuna, Alpaca, LLaMA, Koala, RWKV 等模型,依托于langchain框架支持通过基于FastAPI提供的 API 用服务,或使用基于Streamlit的 WebUI 进行操作。
2025-03-31 22:14:27
862
原创 给大家推荐一本get新技能的书籍,人人都可动手做AI Agent基础入门!!!
代理”这个词在AI出现之前就有了,哲学家们研究过它。像亚里士多德和大卫·休谟这样的大思想家都讨论过代理的概念,他们认为只要能自己做决定,不管是人、动物还是别的东西,都能称作代理。到了20世纪80年代,AI的研究者也开始关注这个概念了。目前,我们倾向于把所有能够感知环境、做出决策并采取行动的实体或系统视为人工智能领域的代理。而AI Agent,即人工智能代理,被定义为一个能够自主执行任务、做出决策并与环境交互的系统。
2025-03-28 16:20:44
914
原创 让大模型给服务器打工:我用LangChain+GLM4搞了个AI运维工具
最近公司实在是太忙,项目复杂度也不断提升。然而,在我们的团队中,越来越多的时间和精力被分散到了繁琐的运维工作中。无论是服务器配置、环境部署,还是日常监控和问题排查,这些任务往往占据了开发人员大量宝贵的时间。随着人工智能技术的飞速发展,我们看到了一个全新的可能性——利用AI来辅助甚至接管部分运维工作。事实上,市面上已经有许多优秀的AI工具,如Cursor、Cline、windsurf等,它们不仅能够帮助开发者生成代码,还能提供智能化的解决方案,提升工作效率。
2025-03-28 16:19:24
937
原创 一书掌握Transformer!《从零到精通:手把手教你构建最先进的NLP模型》(附PDF下载)
国内第1本Transformer——变形金刚红书如果一定要说未来谁能引领人工智能世界,是Transformer而非chatGPT!编辑推荐★★★★★ChatGPT红得发紫,强得让人类心悸。但在它的背后,还隐藏着一位真正的大佬。它的名字叫做——Transformer!
2025-03-26 17:51:56
922
原创 通义千问2.5-Max + Roo Code Cline 插件:实现 AI Agents 自动编程。基准测试超过 DeepSeek v3。
首先得出结论:除了 Cursor 工具,我们还有许多其他选择。例如,今天提到的 Roo Code 作为一个 AI Agents 自动编码的工具,是一个 VSCode 插件,并在千问大模型 qwen-max-2025-01-25 发布时使用。目前,猫哥的主流选择仍然是:Cursor 进行代码生成,配合 GitHub Copilot 提供代码提示。同时,我们也在研究使用 Roo Code、Cline 以及各大模型平台。
2025-03-26 17:40:08
1289
原创 别太天真!RAG若只是文档灌Dify,那要工程师做什么?
RAG技术为AI的回答能力打开了新世界的大门,而分块策略则是这扇门上的钥匙。选择合适的“钥匙”,AI就能更聪明、更准确地为你服务。但正如我们前面提到的,RAG绝不是“部署就完事”的简单技术。从信息存储到分块策略,再到检索和生成,每一步都可能成为业务落地的绊脚石。希望这篇文章能帮你更好地理解RAG的本质和分块策略的奥秘,让你在探索AI的道路上少走弯路。所以,下次有人跟你说“RAG很简单,随手一搞就行”时,不妨问问他们:你试过在杂乱的文档中找到精准答案有多难吗?真正的挑战,往往藏在细节里。
2025-03-26 17:34:54
631
原创 《用Coze开发智能体》详解Coze工作流:搭建DeepSeek R1思维导图智能体
在上一次课程,我们设计了一个工作流,调用DeepSeek R1生成思维导图。我们对工作流的常用插件,进行了详细介绍。在本次课程中,我们创建一个智能体,调用思维导图工作流,生成思维导图。
2025-03-24 15:46:09
1292
原创 AI大模型 | 2024年AI生成式营销产业研究蓝皮书,附PDF免费下载
为我们提供了一个全新的视角,以理解AI如何推动营销产业的变革。随着技术的不断进步,AI在营销领域的应用将越来越广泛,其潜力不容忽视。对于企业和营销专业人士来说,现在是时候开始探索和应用生成式营销策略,以把握未来的市场机遇。生成式AI正在开启营销的新纪元,它通过赋能生产工具,全面提升营销业务流程中的生产力,并重构营销组织生产关系。这一变革不仅限于传统广告和社交媒体营销,还扩展到了电商运营、客户运营和产品创新等新兴领域。AI能够分析消费者行为数据,预测市场趋势,为营销决策提供支持。
2025-03-21 15:21:13
850
原创 大模型训练、推理、微调、大模型从原理到技术细节
1⃣LoRA4⃣P-TuningLoRA是一种适用于大模型微调的低秩逼近方法。它通过在预训练模型的层间添加低秩矩阵来引入新参数,这些矩阵可以捕捉任务相关的信息而不会对原始模型参数造成显著影响。LoRA方法的优势在于其能够有效地减少微调过程中所需的额外计算资源和存储需求,同时保持模型的性能。Adapter是一种微调技术,它通过在预训练模型中添加小型的、可学习的模块来适配特定任务。这些模块可以插入到现有层中,允许模型在学习新任务时保留大部分原有参数,从而减少额外的计算成本和内存占用。
2025-03-21 15:17:51
918
原创 RAG系统中,知识库PDF文档中有很多表格内容,应该如何处理?提升召回的准确性
PDF文档格式在目前大部分格式文档中,属于比较**“脏”以人的视觉非常复杂**的事情。现在企业里,很多文件都是由生成而来,其中很多章节里,内容中包含表格是再的事情。如果我们不对这些表格进行特殊处理,当做普通的文件进行读取、向量化,那么极大可能会丢失这些。很好理解,因为表格的里面的都是有它的的。如果将其粗暴的转成,你让大模型如何理解这些数据指标究竟是什么意义呢?对于这个问题,目前的。首先,使用用专门的PDF阅读组件,将PDF中的带有表格页转换为图片格式。再使用具有的模型,如等,对转换后的图片。
2025-03-21 15:14:01
1051
原创 手把手实战:用 DeepSeek R1 + Ollama 搭建高效 RAG 系统!
构建一个强大的 RAG(检索增强生成)系统,能够极大提升 AI 在知识问答、信息检索和内容创作中的能力。DeepSeek R1 和 Ollama 作为当前领先的 AI 工具,为 RAG 系统的开发提供了强大支持,让开发者能够更加高效地构建智能 AI 解决方案。本指南将详细介绍如何利用这些技术进行 RAG 系统的搭建,涵盖环境设置、核心流程、优化策略和最佳实践。DeepSeek R1 是一款高性能的开源大模型,具备强大的理解和推理能力,适用于多种 AI 任务。
2025-03-20 16:17:43
1086
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人