问题背景
PDF文档格式在目前大部分格式文档中,属于比较**“脏”的文件,因为它的设计本身是以人的视觉为主导的,而对计算机而言,要去做PDF的内容的理解和解析,是一件非常复杂**的事情。
现在企业里,很多PDF文件都是由WORD生成而来,其中很多章节里,内容中包含表格是再正常不过的事情。如果我们不对这些表格进行特殊处理,当做普通的文件进行读取、向量化,那么极大可能会丢失这些数据的语义。
很好理解,因为表格的行、列里面的数据都是有它特殊的含义的。如果将其粗暴的转成普通段落,你让大模型如何理解这些数据指标究竟是什么意义呢?
解决思路
对于这个问题,目前主流的思路是:将表格页转换为图片,再利用多模态能力对图片进行描述,再对描述内容的文本做向量化存储。
首先,使用用专门的PDF阅读组件,将PDF中的带有表格页转换为图片格式。
再使用具有多模态能力的模型,如GPT-4V等,对转换后的图片进行描述。这些模型能够理解图像内容,并生成相应的文本描述。
这样,在多模态模型的帮助下,图像中的表格内容可以被识别并转换为结构化的文本描述,这些描述包含了表格中的关键信息,如列标题、行数据和表格结构等。
使用文本向量化技术,如BGE-M3等,将生成的文本描述转换为数值向量。这些向量表示了文本内容的语义特征,便于后续的相似性计算和检索。
将转换后的向量存储到向量数据库中,如 Milvus 或 Weaviate 等。这些数据库支持高效的相似性搜索和检索操作,可以快速找到与查询内容相关的向量表示。
当然,目前市面上有一家公司做了类似的产品:
亲测了一份PDF文件,最开始要排队,虽然等了10几分钟,但是最终出来的效果确实不错,有开源版本,也可以调他们的API,或者在线测试下。https://mineru.net/
课代表小结
这个方案的核心是:通过 多模态模型 对 图片进行描述,多模态通常能准确地提取表格中的关键信息,避免 了 直接解析PDF表格 时可能出现的错误和遗漏。
如何零基础入门 / 学习AI大模型?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?
”“谁的饭碗又将不保了?
”等问题热议不断。
不如成为「掌握AI工具的技术人」
,毕竟AI时代,谁先尝试,谁就能占得先机!
想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高
那么我作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,希望可以帮助到更多学习大模型的人!至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
👉 福利来袭
CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈
全套AGI大模型学习大纲+路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉 福利来袭
CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。