图解 LangChain 多语言文档处理,通宵达旦只为你打破语言障碍

图解 LangChain 多语言文档处理,通宵达旦只为你打破语言障碍

LangChain 就像是一个多语言翻译官,可以帮你打通各种语言文档的沟通桥梁。

基本功能

1. 文档加载

# 导入文档加载器
from langchain.document_loaders import TextLoader, PDFLoader
# 加载英文文档
英文文档 = TextLoader("english_doc.txt").load()
# 加载中文PDF
中文文档 = PDFLoader("chinese_report.pdf").load()
# 加载多语言文件夹
from langchain.document_loaders import DirectoryLoader
多语言文档集 = DirectoryLoader("./multilingual/", glob="**/*.txt").load()

2. 文本分割

# 导入分割器
from langchain.text_splitter import RecursiveCharacterTextSplitter, MarkdownTextSplitter
# 创建中文分割器
中文分割器 = RecursiveCharacterTextSplitter(
    chunk_size=500,
    chunk_overlap=50,
    separators=["\n\n", "\n", "。", "!", "?", " ", ""]
)
# 分割多语言文本
分割后文档 = 中文分割器.split_documents(多语言文档集)

Generated Image

实用功能

1. 多语言翻译处理

# 导入翻译链
from langchain.chains import TranslationChain
from langchain_community.llms import OpenAI
# 创建翻译链
llm = OpenAI(temperature=0.1)
翻译链 = TranslationChain.from_llm(
    llm=llm,
    source_language="zh",
    target_language="en",
    verbose=True
)
# 翻译中文文档
for doc in 中文文档:
    try:
        翻译结果 = 翻译链.run(doc.page_content)
        doc.metadata["translated_content"] = 翻译结果
    except Exception as e:
        print(f"翻译出错: {e}")

2. 语言检测与路由

# 导入语言检测工具
from langdetect import detect
import langchain
# 创建语言路由函数
def 语言路由处理(文档列表):
    处理结果 = []
    for doc in 文档列表:
        # 检测语言
        语言 = detect(doc.page_content)
        doc.metadata["language"] = 语言
        # 根据语言选择处理器
        if 语言 == "zh":
            处理器 = 中文处理链
        elif 语言 == "en":
            处理器 = 英文处理链
        else:
            处理器 = 默认处理链
        处理结果.append(处理器.run(doc))
    return 处理结果

3. 多语言向量化

# 导入向量存储
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
# 创建多语言嵌入模型
嵌入模型 = HuggingFaceEmbeddings(
    model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
    model_kwargs={'device': 'cuda'}
)
# 构建向量数据库
向量库 = Chroma.from_documents(
    documents=分割后文档,
    embedding=嵌入模型,
    persist_directory="./multilingual_db"
)
# 多语言检索
检索结果 = 向量库.similarity_search(
    "查询既可以是中文也可以是English",
    k=5
)

Generated Image

常见任务示例

1. 多语言知识库构建

# 定义文档类型和语言映射
文档类型 = {
    "英文": ["en", "*.txt", "*.pdf", TextLoader, PDFLoader],
    "中文": ["zh", "*.txt", "*.pdf", TextLoader, PDFLoader],
    "日文": ["ja", "*.txt", "*.pdf", TextLoader, PDFLoader]
}
def 构建多语言知识库(文档目录="./documents"):
    # 准备容器
    所有文档 = []
    # 按语言加载文档
    for 语言, 配置 in 文档类型.items():
        语言代码, 文本格式, PDF格式, 文本加载器, PDF加载器 = 配置
        # 加载文本文件
        文本目录加载器 = DirectoryLoader(
            文档目录,
            glob=文本格式,
            loader_cls=文本加载器
        )
        语言文本 = 文本目录加载器.load()
        # 加载PDF文件
        PDF目录加载器 = DirectoryLoader(
            文档目录,
            glob=PDF格式,
            loader_cls=PDF加载器
        )
        语言PDF = PDF目录加载器.load()
        # 添加语言元数据
        for doc in 语言文本 + 语言PDF:
            doc.metadata["language"] = 语言代码
            所有文档.append(doc)
    # 构建向量数据库
    return Chroma.from_documents(
        documents=所有文档,
        embedding=HuggingFaceEmbeddings(
            model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
        )
    )

2. 跨语言检索问答

# 创建多语言检索QA系统
from langchain.chains import RetrievalQA
from langchain_community.chat_models import ChatOpenAI
def 创建跨语言问答系统(向量库, 默认语言="zh"):
    # 创建语言模型
    llm = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo")
    # 检测查询语言
    def 检测语言(查询):
        try:
            检测结果 = detect(查询)
            return 检测结果
        except:
            return 默认语言
    # 创建检索QA链
    qa系统 = RetrievalQA.from_chain_type(
        llm=llm,
        chain_type="stuff",
        retriever=向量库.as_retriever(search_kwargs={"k": 3})
    )
    # 包装一个能处理多语言的函数
    def 多语言问答(查询):
        # 检测查询语言
        查询语言 = 检测语言(查询)
        # 添加语言指示到提示中
        增强查询 = f"请用{查询语言}语言回答: {查询}"
        # 获取回答
        结果 = qa系统.run(增强查询)
        return 结果
    return 多语言问答

注意事项

  1. 多语言模型比单语言模型体积更大,算力要求高
  2. 不同语言分词逻辑差异大,记得调整分词器
  3. 跨语言检索精度可能低于单语言系统
  4. 评估时需为每种语言建立单独的测试集

总结

LangChain库是多语言文档处理的利器,可以帮你:

  • 加载多种语言文档
  • 智能分割不同语言文本
  • 创建跨语言向量索引
  • 构建多语言问答系统

掌握了LangChain多语言功能,从此告别文档翻译的噩梦!语言不再是阻碍,快速构建能够无缝处理多国语言的智能应用吧~

如何零基础入门 / 学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

那么我作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,希望可以帮助到更多学习大模型的人!至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

👉 福利来袭CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

全套AGI大模型学习大纲+路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

read-normal-img

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉 福利来袭CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

img

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值