最快5分钟,打造一个直接上岗工作的3D数字人。
这是大模型给数字人领域带来的最新震撼。
就像这样,一句话描述需求:
生成的数字人直接就能进驻直播间当主播。
跳起女团舞也不在话下。
整个制作过程中,想到什么说什么就行,大模型都能自动拆解需求,瞬间get设计、修改思路。
△2倍速
再也不怕老板/甲方的想法太新奇。
这样的文生数字人技术,来自百度智能云最新发布。该说不说,是要把数字人的使用门槛一口气砍没的节奏了。
听闻如此神器,我们照例第一时间争取到了内测资格,更多细节,一起先睹为快~
一句话5分钟,3D数字人直接上岗
从Chatbot到文生图片,再到文生视频,大模型带来的交互方式的变革,已经无需赘言。
现在,在百度智能云曦灵平台上,基于文心一言4.0,数字人定制这件事,同样能通过自然语言对话的形式实现。
举个栗子,生成一个品牌代言人,需要几步?
首先,输入“生成一个百度智能云品牌代言人”这样的提示词,同时上传logo图片。
大模型就会自动从脸型、发型、妆容、服装、配饰等多个维度,开始一步一步思考:
自动打造出符合要求的数字人。
△8倍速
如果需要调整细节,一样“说话”就能完成。
也就5-10分钟,一个360°无死角的高质量数字人就基本成型了。
捏脸完毕,下一步就是给数字人绑上表情,让Ta能动起来。同样只需要一键操作,等待1-2分钟。
相比于过去高精度3D数字人好几天、甚至好几个月的定制周期,这个分钟级的效率,确实称得上是“颠覆”了。
值得一提的是,效率如此大幅提升的前提下,这样的文生数字人细节质量依然保持着高水准。
表情细节:
动作质量:
结合百度智能云在数字人领域的长期积累,上岗播新闻、直播带货都不在话下。
数字人技术全面AI化
效率和落地能力的直观提升之外,此次百度智能云推出的文生数字人方案背后,不少技术细节也值得好好说道说道。
正如前文所说,其技术基座,正是文心一言4.0.
而起到关键作用的大模型能力包括:
- 自动拆解要做的任务和子任务
- 显示思考过程,做到有理有据,让整个生成过程“白盒化”
- 实现了基于内容提炼的短期记忆,可以通过对话持续调整数字人形象
这样一来,大模型就成了一个能懂人类甲方心理的数字人造型助理,可以模仿人类思路,去抠数字人定制的每一个细节,并且做到过程可控。
同时,大模型还在背后施展出了调用工具的能力。
比如,调用涵盖6000+维度的脸型及五官细节“知识库”,整体调整数字人面容。
大模型技术之外,百度智能云还在曦灵平台中加入了新的AI渲染技术,支持AI驱动、AI布料模拟,让数字人的表情肢体动作更自然,服装面料质感更真实。包括:
- 动态褶皱贴图,让纹理更加真实。
- 分钟级4D自动绑定,让眼睛、嘴唇等部位能够完美闭合,并支持表情风格切换。
- 肢体肌肉挤压、碰撞实时模拟。
- ……
官方还透露,接下来,百度智能云计划实现角色、行为、场景、灯光、镜头要素的全面AI化。
数字人,步入大模型时代应用新范式
如果说去年大家还在热火朝天地讨论基础模型,那么今年以来由Sora而起,大模型带来的应用范式的变革,已经成为科技圈新的热议焦点。
在交互方式的改变之上,核心受到关注的,其实还是效率提升:
输出创意,生成所需,大模型正在让越来越多本来需要消耗大量时间、人力、金钱的工作,变得简单、高效、人人可用。
现在,百度智能云在3D数字人领域的最新技术进展,就是这种可能性在人们更为熟知的图像、视频领域之外,拓展开来的一个代表。
可以预见的是,过去更多在大企业、大机构中被使用的数字人员工,在新范式的驱动之下,步入“寻常百姓家”正在成为可能。
此前,清华大学《虚拟数字人研究报告2.0版》数据显示,从头部企业的布局来看,面向B端的数字人产品服务是市场的主要组成部分,占比达到79%。
而随着大模型技术对数字人应用模式的颠覆,不仅中小企业不用再对6位数的3D高精度数字人望而却步,C端的应用也将得以拓展。
这也就意味着,数字人的应用和商业化,已经翻开新的一页。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。