- 博客(674)
- 收藏
- 关注
原创 LLaMA Factory多模态微调实践:微调Qwen2-VL构建文旅大模型
LLaMA Factory是一款开源低代码大模型微调框架,集成了业界最广泛使用的微调技术,支持通过 Web UI 界面零代码微调大模型,目前已经成为开源社区内最受欢迎的微调框架之一,GitHub 星标超过 4.7 万。本教程将基于通义千问团队开源的新一代多模态大模型 Qwen2-VL-2B-Instruct,介绍如何使用 矩池云 平台及 LLaMA Factory 训练框架完成文旅领域大模型的构建。GitHub地址:https://github.com/hiyouga/LLaMA-Factory一。
2025-05-01 09:30:00
647
原创 一文剖析大模型、RAG、Agent、MCP、Function Calling、知识库、向量数据库、知识图谱、AGI 的区别和联系
Function Calling 是一种强大的工具,它为大语言模型提供了与外部工具和服务交互的能力,从而解决了大模型知识更新停滞的问题。然而,它的局限性在于缺乏跨模型的一致性和平台依赖性。尽管如此,Function Calling 仍然是一个重要的技术,尤其是在需要快速实现特定功能时。未来,随着技术的不断发展,我们期待看到更多能够克服这些局限性的解决方案。
2025-04-28 15:45:13
632
原创 从0到1打造企业级AI售前机器人——实战指南二:RAG工程落地之数据处理篇[特殊字符]
RAG工程的内容有些多,怕大家看着太累,还是决定分成两个部分发。本文我们了解了RAG的原理、数据的处理方案、以及实战中的数据应用方案。只能进行文本回复,无法提供相关的图片、视频等能力。如果用户query不标准,问题不全,我们的知识库可能匹配不到内容。知识库中的内容仍然存在匹配错误的情况。例如:用户问A产品的价钱,我们知识库筛选出了B产品的价钱,然后回复给了用户。经典的中文二义性问题。用户的问题可以用A来回答,也可以用B来回答,怎么办?所以下一篇,我们将会完成RAG工程,来解决上述四个问题。
2025-04-28 15:42:14
1072
原创 【厦大大模型报告】每个人都可以读懂的DeepSeek大模型科普,PDF全141页
厦大团队出品的《每个人都可以读懂的大模型科普系列报告》,该系列报告包括了四大部分(面向普通大众的,面向企业的,面向高校的,面向政府的),系列报告在全网浏览量已经远超过1000万。
2025-04-25 16:04:06
250
原创 国内本地部署FastGPT知识库(FastGPT+ChatGLM3+m3e),搭建属于自己的“备忘录”
大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。位置: \wsl.localhost\Ubuntu\home\csc\fastgpt。位置: \wsl.localhost\Ubuntu\home\csc\fastgpt。大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。
2025-04-21 15:10:08
947
原创 从Transformer到ChatGPT:一本让你看懂大模型所有黑箱的“保姆级“教程
项目地址:https://github.com/rasbt/LLMs-from-scratch/tree/main?作为开源软件的热情支持者,Sebastian在过去十多年里一直是积极的贡献者。值得一提的是,Sebastian Raschka在GitHub上开源了与这本书配套的代码库,为研究者和实践者提供了宝贵的资源。以清晰的语言、图表和示例,详细解释了从设计创建到采用通用语料库预训练,再到针对特定任务进行微调的每个阶段。,该书致力于阐述从零开始构建大型语言模型的完整过程,包括模型的创建、训练和调整。
2025-04-16 15:23:16
421
原创 使用KAG+多模态RAG+智能体建造强大的AI推理机器人
KAG(Knowledge-Aware Graph Generator,知识感知图生成器)框架是开源的,充分利用了知识图谱和 RAG 技术的互补优势。它不仅将图结构整合到知识库中,还将知识图谱的语义类型、关系和知识图谱问答(KGQA,Knowledge Graph Question Answering)整合到 KAG 中。KAG 框架具有几个重要功能,使其在专业环境中回答问题时表现更出色。
2025-04-14 16:14:02
586
原创 如何为你的业务选择最合适的 RAG 架构?
最近,有篇讲缓存增强生成 (Cache-Augmented Generation, CAG) 的论文火了一下,被称为 RAG 的新技术。我们知道了 RAG 是怎么回事,下面简单说说 CAG:RAG 与 CAG 对比。
2025-04-11 14:52:31
939
原创 内行人都在学的大模型黑书——外网爆火的LLM应用手册来了!
Transformer 是工业化、同质化的后深度学习模型,其设计目标是能够在高性能计算机(超级计算机)上以并行方式进行计算。通过同质化,一个Transformer 模型可以执行各种任务,而不需要微调。Transformer 使用数十亿参数在数十亿条原始未标注数据上进行自监督学习。这些后深度学习架构称为基础模型。基础模型Transformer 是始于 2015年的第四次工业革命的一部分(通过机器-机器自动化将万物互联)。
2025-04-07 14:33:10
866
原创 Llama 4架构解析与本地部署指南:MoE模型在170亿参数下的效率突破
Meta推出的16专家与128专家配置的Llama 4模型,标志着开源大语言模型发展迈出重要一步。通过采用混合专家(MoE)架构,Meta在持续突破模型性能边界的同时,有效应对了AI模型规模扩展带来的计算挑战。Scout与Maverick采用不同专家数量的设计,表明Meta正在积极探索模型容量、推理效率与任务性能之间的最优平衡点。随着这些模型向研究社区和开发者开放,我们有望获得关于如何最佳利用MoE架构的丰富新见解。
2025-04-07 14:30:00
1178
原创 基于千问+LangChain构建垂直领域大模型应用:电商场景实际案例(附完整源码)
本文以电商客服投诉处理为场景,展示了如何通过LangChain框架与开源大模型构建垂直领域智能应用的完整路径。大家可以根据自己的实际场景进行动态调整。完整代码扫描下方二维码。
2025-04-05 10:15:00
1409
原创 基于LangChain与Ollama的API封装实战详解(含完整代码)
本文详细介绍了如何利用 LangChain 将大语言模型封装成 API 接口,并基于 FastAPI 构建了一个高性能、模块化的服务平台。
2025-04-04 10:00:00
704
原创 2024人工智能大模型技术财务应用蓝皮书丨附130页PDF下载
蓝皮书主要从人工智能大模型技术概述、人工智能大模型技术体系概述、人工智能大模型技术赋能财务概述、人工智能大模型技术赋能财务应用、人工智能大模型财务应用局限性和关注问题五大篇章进行阐述。
2025-04-03 14:05:01
289
原创 AI大模型应用实战:如何用langchain打造自己的AI工作流
LangChain 是一个功能强大的 AI 框架,专门用于构建基于大语言模型(LLM)的智能应用。它不仅提供了基础的 LLM 调用接口,还通过 Prompt 模板、记忆(Memory)、智能代理(Agents)、知识检索(Retrieval)等模块,让 AI 具备更强的推理、搜索、执行任务的能力。
2025-03-31 21:05:55
825
原创 构建图形RAG应用:利用知识图谱和AI增强医学期刊洞察
闭包是 JavaScript 中一个非常重要的概念,它允许函数访问并操作其词法作用域之外的变量。换句话说,闭包是一个函数以及其周围状态(词法环境)的捆绑。闭包是 JavaScript 中一个非常重要的概念,它允许函数访问并操作其词法作用域之外的变量。闭包具有访问外部变量、数据隐藏和状态保持等特性,在模块化、事件处理程序和回调函数等场景中都有广泛的应用。在使用闭包时,需要注意内存泄漏和性能问题。该应用程序和笔记本的随附代码在此处。知识图谱 (KG) 和大型语言模型 (LLM) 是天作之合。
2025-03-31 21:01:54
593
原创 大模型解读!中国人工智能大模型技术白皮书!
大模型技术,以其广阔的应用前景和巨大潜力,无疑成为了技术发展的焦点。然而,随之而来的挑战亦不容忽视:****可靠性、可解释性的难题需要我们去攻克,数据质量与数量的提升成为迫切需求,应用部署成本的降低与迁移能力的增强同样重要,而安全与隐私保护的强化更是关键中的关键。此外,探索更为贴合实际、具备落地价值的应用场景,亦是我们需要努力的方向。****这些挑战与机遇并存,将决定大模型技术未来的广泛应用与发展命运。
2025-03-28 11:21:17
1181
原创 超实用!用 Ollama + DeepSeek + Dify 搭建本地知识库,提升企业效率
Dify 是一个开源的 LLM(大语言模型)应用开发平台,功能超强大。它支持自定义 AI 工作流,能实现复杂任务自动化;还有 RAG 管道,通过检索增强生成技术,让文档检索和问答超准;多种主流 LLM 模型都能集成管理,还提供丰富的日志和监控功能。Dify 的架构也很清晰,分为模型层、数据处理层、应用层和管理层,能满足各种需求。通过 Ollama + DeepSeek + Dify 这个组合,企业可以轻松搭建本地知识库,提升内部信息管理效率。无论是文档检索、问答系统还是自动化工作流,都能轻松搞定。
2025-03-28 11:20:26
1125
原创 让知识图谱不再遥远:用 Ollama 和 Embeddings 快速搭建你的智能问答系统
你有没有遇到过这种情况:工作中需要快速查找资料,结果花了大把时间在一堆无关信息中苦苦挣扎?或者说,你公司里的数据海量,却无法高效地找到所需的关键知识?其实,你可能已经掌握了一项强大的工具——知识图谱(Knowledge Graph),而你还不知道如何用它提高效率。今天我们就来聊聊如何使用和这两个工具,来搭建自己的知识图谱,快速解决复杂问题。而且,这套方案不仅适合技术大牛,同样也适合技术小白,简单易上手。
2025-03-28 11:06:12
636
原创 基于Prometheus+夜莺+Deepseek+Dify构建告警分析智能体
目前市场上的大模型已经相对成熟,但大部分人都只是把它当成一个更加智能的对话机器人,使用方式也仅仅是你问我答,怎么用大模型来帮助我们更好的工作,甚至直接帮我们完成工作成为了日后发展不得不考虑的一个方向。于是有人提出了 AI Agent,先通过这张图片来了解一下什么是 AI Agent。「简单来说 AI Agent = 大模型 + 插件 + 工作流」,大模型能够根据事件需求自主调用工具和工作流来完成用户需求快到下班时间了,让 AI 总结一下今天的告警早上刚来到公司,让 AI 总结一下最近24小时的告警。
2025-03-26 15:12:42
1221
原创 5分钟带你看懂什么是大语言模型(LLM)
想象一下,你偶然发现了一份电影剧本,里面描述了一个人与他们的 AI 助手之间的对话场景。不过,剧本上 AI 的回应部分被撕掉了。现在,假设你有一台神奇的机器,它可以读取任何文本并预测下一个合理的单词。这样,你就可以利用这台机器来补全剧本–先输入已有的文本,让机器AI 该如何回复的第一个词,然后不断重复这个过程,逐步生成完整的对话。这其实就是聊天机器人背后的原理。一个大语言模型本质上就是一个,它能预测任何一段文本的下一个词。它并不是确定地选择一个词,而是会给所有可能的词分配一个。
2025-03-26 14:37:03
1074
原创 年薪40W!转AI产品经理后,我明白了有人带的意义在哪!
我是2年技术岗,纯纯的产品外行,对这个岗位也一知半解。经过半年才真正意义上落地了一套较为系统的产品经理工作方法!这套方法最后也帮我成功转岗AI产品经理,毕业2年拿到了年包40W的offer。如果你正想转岗/入行产品经理,我的故事或许能给你一些启示👇目标有了,问题也有了和很多人一样,毕业的时候比较迷茫,不知道自己喜欢什么行业、岗位…就按照专业找了一个对口且擅长的技术工作,先着陆。因为工作内容,我了解到了产品经理这个岗位,并对它产生了浓厚的兴趣,说来原因有很多:了解到当下AI产品经理薪资中位数36K,我立即给
2025-03-26 14:15:23
940
原创 DeepSeek R1本地化部署 Ollama + Chatbox 打造最强 AI 工具
可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。的爆火,远不止于此。
2025-03-24 10:23:00
303
原创 快速构建和部署 RAGS:节省时间和最大化效率的逐步指南
检索增强型应用程序是 LLM 的主要用例之一。但是,大多数 RAG 应用程序使用相同的技术栈,因此工程师花费大量时间重复执行基础工作。我创建了一个模板项目,每当我想要启动一个 RAG 应用程序时,它都会帮助我。这是一篇关于此模板的文章。您可以窃取它来快速构建 RAG 应用程序并将其部署到空间中,或者创建一个与此类似的应用程序,并且永远不必再担心样板文件。
2025-03-24 10:15:07
901
原创 复旦NLP团队发布80页大模型Agent综述,一文纵览AI智能体的现状与未来
本文综述了基于大型语言模型(LLM)的智能体研究进展。LLM因其多功能性被视为通用人工智能(AGI)的潜在火花。文章追溯了智能体概念的起源,阐述了LLM作为智能体基础的优势,并提出了包含大脑、感知和行动的通用框架。同时,探讨了LLM智能体在单智能体、多智能体和人机协作等场景下的应用。最后,深入研究了智能体社会,讨论了其行为、人格和社会现象,并指出了该领域的关键问题和未来方向。
2025-03-22 10:29:55
978
原创 DeepSeek+LangChain:家教式全流程RAG实战指南
ℹ️RAG全称是Retrieval-Augmented Generation(检索增强生成),一句话解释就是:把问题和相应的参考资料一起给大模型,以期望得到效果更好的模型表现。ℹ️包含用于开发大语言模型应用的各种功能组件,不仅仅是RAG,所以相较于等专门为RAG设计的框架来说,功能更为丰富,更“笨重”,学习门槛更高。参见requirements.txt。这里使用的DeepSeek官方提供的API。
2025-03-21 10:49:25
1181
原创 解锁 RAG 的力量:5 种检索增强生成如何转变 LLMs 以获得准确回应
检索增强生成 (RAG) 帮助 AI 模型在生成响应之前检索外部信息。但这个过程究竟是如何工作的,为什么它很重要呢?大型语言模型在许多任务中表现出色。它们可以编写代码、起草电子邮件、幻觉出制作完美三明治的配料,甚至可以撰写文章,尽管我仍然更喜欢自己做。然而,它们有一个主要限制。它们缺乏实时知识。由于训练 LLM 是一个耗时的过程,因此它们并*“不知道”*最近发生的事件。如果你问它们上周发生了什么,它们要么显示免责声明,要么提供过时的答案,要么生成完全不准确的内容。
2025-03-21 10:44:00
912
原创 Manus没有秘密:明浩老师70页PPT解读AI Agent
距离我上一个讲述关于DeepSeek内容的PPT其实才过去半个多月,回头看之前的内容,我自己觉得关于AI Agent的部分内容其实有些假大空。因此当我看到 Manus,并且深度体验了之后,我知道那个之前一直飘在空中的 Agent 概念终于有了一个实打实的可以看到的东西……这或许也是 Manus 的意义所在。用一泽的一句话说:Manus 吹散了人与Agent之间的迷雾。
2025-03-21 10:35:13
359
原创 AI开发者必看!大模型入门秘籍来啦
大模型开发过程中会碰到的各种场景以及各种关键字,这个教程通通都有讲到。像是提示词、思维链、评估、代理、分隔、向量化、检索等等。真的是涵盖得超全面,完全不用担心会有遗漏。这个超棒的项目可是基于吴恩达老师的大模型系列课程制作出来的。吴恩达老师在 AI 界那绝对是大佬级别的存在。他的课程含金量极高,跟着学准没错。这个超绝的大模型入门秘籍。它就如同游戏里的新手攻略一般,能助力咱们迅速上手大模型相关项目哦。有了它,开发之路不就顺畅多啦。真这绝对是入门大模型开发的必备宝典。我自己都迫不及待要去深入学习啦。
2025-03-20 11:59:52
765
原创 爆火 | API 终将淘汰,MCP+LLM+向量数据库才是 Agent 开发新范式
大模型虽然智能,但似乎在面对各种问题时仍显得力不从心。许多用户在运用大模型时,可能都会遇到这样的困惑。举例来说,询问 DeepSeek 关于即将到来的清明节的习俗,AI 能够信手拈来地提供答案;然而,当要求它制定一份为期三天两晚的清明旅行计划时,其给出的方案似乎总是不够完美。原因显而易见,在制定旅行计划时,大模型缺少了天气、机票、铁路、导航、酒店等重要数据与工具的接入。这就好比一个极具智慧的大脑,却缺乏了外部的“数据”输入和强健的四肢支持。
2025-03-20 11:55:20
1374
原创 为什么 RAG 一定需要 Rerank?
尽管 Rerank 模型的运行速度较慢,但其在准确性上的优势使其在许多场景中不可或缺。通过两阶段检索系统,我们可以在第一阶段快速筛选出候选文档,然后在第二阶段通过 Rerank 模型进行精细排序,从而在保证效率的同时,显著提升检索结果的质量。这种策略在处理复杂的问答任务和生成任务时尤为重要,因为它能够确保最终返回的文档不仅数量适中,而且相关性更高。
2025-03-20 11:48:48
648
原创 如何从零训练一个LLM:尝试基于0.5B小模型复现DeepSeek-R1的思维链
1.虽然微调第一步得到的SFT模型已经能够输出思维链,但是其回答问题的准确性还比较差,因为SFT训练的重点其实是整体的回复质量,而不是专注于正确答案;2.但如果不经过SFT训练,直接使用GRPO的话,一开始模型的输出是没有思维链的,又无法准确提取答案,导致没有任何奖励,变得难以训练,或者选择能力更强的底座模型;3.因此对于聊天类的数据,可以考虑直接使用SFT去微调,因为整体的回复质量更为重要,而对于数学/代码等要求正确答案/能否运行的数据,可以SFT+强化学习。\4. 完整代码。
2025-03-18 16:01:58
747
原创 从裁员到年薪百万:程序员靠RAG技术逆袭的“核心密码”
作为一名从业七年的程序员,最近听到很多程序员朋友都喜提了n+1裁员大礼包。上周与老友聚会时,大家纷纷诉说着各自最近的遭遇,聚会气氛一度十分沉重。老Z感叹:“公司决定将部分业务外包,结果我被列入了裁员名单。”老L则无奈道:“市场竞争激烈,项目减少,团队预算被削减,前几天我也被裁掉了。”聚会回家后我十分焦虑地打开了招聘软件,发现传统程序员的岗位出现了僧多肉少的情况,hr每天回复几十次的都有,关键薪资待遇并不是很理想。
2025-03-18 15:52:36
807
原创 漫画图解:一口气搞懂大模型的10个核心概念
当哪吒在闹海宫犯下错误后,太乙真人不仅惩罚他,还教导他正确的力量运用方法。类似地,RLHF不只是惩罚模型的不良输出,还通过强化学习算法引导模型产生更符合人类期望的回应。
2025-03-17 15:16:11
745
原创 2025年的风口!| 万字长文,带你纵观大模型Agent,涉及研究痛点、应用场景、发展方向
最近大家都在提Agent,例如AutoAgent、Dify、Manus等,突然想到一个问题,那么什么才是Agent,有没有明确的定义呢?为此关于Agent的定义,网上搜索了一圈,说其最早“Agent”这个词可以追溯到古罗马时期,并且还能够从一些哲学家的哲学作品找到影子。一篇文章中说Agent的哲学概念泛指具有自主性的概念或实体,它可以是人造的物体,可以是植物或动物,当然也可以是人。这定义挺好的,我没意见。感兴趣的小伙伴可以就这个定义去搜索了解一下,把故事线梳理清楚了可以整篇论文了。
2025-03-17 14:44:25
1172
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人