Dify 保姆级教程之:零代码打造票据识别专家

图片

相信实操过的同学对 Dify 的基本组件已有所了解,本篇我们继续熟悉 Dify 中另外一个重要概念 – 条件分支,带你零代码打造一个票据识别专家

自从有了 Dify,代码小白也可以轻松打造智能体,你需要做的只是在页面点点点而已!

先给大家展示下搭建完成的流程图

图片

这里面大致流程:用户上传一张发票图片,发票类型识别大模型判断发票类型,然后通过条件分支分发给不同的票据识别大模型,给出识别结果。

接下来,我们一步一步搞定它!

1. 单类型票据识别

1.1 新建聊天助手

首先,我们来搞定单个分支,跑通单类型票据识别的流程。

和上篇一样,我们先创建一个空白应用,选择工作流编排:

图片

进来后,默认已给你配置了一个最简单的工作流:

图片

1.2 修改 LLM 组件

现在,需要做的就是修改下 LLM 组件的角色提示词,在SYSTEM中填入:

根据图片识别内容,给出json格式的结构化信息,包括:起始站,终点站,车次,乘车日期,出发时间,票面价格,身份证号,姓名。

因为我们的任务非常简单,因此无需复杂的提示词,只要把你的要求清晰表达出来即可。

不过,这里需要选择支持多模态输入的大模型,不了解如何接入大模型的小伙伴可以翻看之前的教程。

我这里先尝试了 googlegemini-1.5-flash,记得在下方把视觉选项打开,否则 Dify 默认不启用多模态能力。

图片

就这么简单,一个火车票识别智能体就搭建完了。

图片

来试试效果咋样吧?

图片

从上图可以发现,gemini-1.5-flash 始终无法 get 车次的概念,即便我指示了车次在图中的位置。

没招了,只能更换底层大模型!

市面上支持多模态输入的大模型还有很多,实测下来,发现Qwen/Qwen2-VL-72B-Instruct的错误率最低,推荐大家使用!

1.3 更换大模型 Qwen2-VL

72B 的模型,本地部署的成本可太高了。如果你只是想体验一把,可以前往硅基官网注册一个账号,新用户有赠费,体验它的付费模型,妥妥够了!

因为硅基的模型兼容 OpenAI 格式,因此注册拿到 API Key 之后,回到 Dify 模型配置这里,选择 OpenAI-API-compatible 类型:

图片

注意如下字段的填写,模型名称填入Qwen/Qwen2-VL-72B-Instruct,API endpoint URL 一定是 https://api.siliconflow.cn/v1

图片

拉到下方,将 Vision 支持选上,最后记得保存!

图片

最后,回到我们的工作流,把 LLM 模型换过来:

图片

终于,成功搞定:

图片

看来,对于火车票这种类型图片,海外模型总归水土不服,还得国产的上!

2. 多类型票据识别

有了单类型票据识别,要能识别多种类型,咋搞?

总得要判断语句吧,怎么判断呢?

遇事不决,交给大模型。

只需加一个发票类型识别的LLM即可:

图片

比如,这里以两个发票类型举例,提示词如下:

你是发票识别专家,根据用户上传的发票图像,给出发票类型。只需返回指定的发票类型对应的序号,无需其他任何内容。
发票类型包括:
1.火车票
2.增值税电子发票
如果无法判断,直接输出0。

2.1 添加条件分支

然后,在工作流种添加一个条件分支

图片

条件分支会根据发票类型识别大模型的输出,路由到不同的识别大模型

为此,我们再来添加一个电子发票识别的大模型,提示词结构和火车票一样,唯一的区别就是输出内容,你改下即可:

根据图片识别内容,给出json格式的结构化信息,包括:发票标题,发票号码,开票日期,购买方信息名称,购买方统一社会信用代码/纳税人识别号,销售方信息名称,销售方统一社会信用代码/纳税人识别号,项目名称,规格型号,单位,数量,单价,金额,价税合计(小写),备注。

2.2 添加变量聚合器

最后,我们可以把不同识别大模型的输出,都统一路由到一个叫变量聚合器的组件中:

图片

否则,你要为每个识别大模型分支新建一个输出组件,岂不是很麻烦?

搭建完毕,点击上方预览来测试下:

图片

至此,一个支持多类型票据识别的智能体就搞定了,整体流程如下:

图片

怎么样,是不是很简单?

2.3 附:导入工作流

为了方便有需要的朋友参考,完整的 DSL 发给大家,公众号后台,发送票据识别自取。

你只需要,在新建聊天助手时,选择从这里导入:

图片

图片

3. 智能体发布

拿到这些结构化数据后,如果要在后端做进一步处理,比如接入数据库、接入微信等,就需要把智能体发布,并拿到 Dify 的 API。

如何零基础入门 / 学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

那么我作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,希望可以帮助到更多学习大模型的人!至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

👉 福利来袭CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

全套AGI大模型学习大纲+路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

read-normal-img

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉 福利来袭CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

img

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

<think>好的,用户现在在寻找关于Dify搭建的详细教程,特别是保姆的完整指南。我需要根据他们提供的引用内容来组织回答。首先,用户提到了引用[2],里面提到了使用Docker部署Dify,然后整合Ollama和私有化知识库的步骤。我应该详细分解这些步骤,确保结构清晰,符合用户要求的系统指令,比如使用正确的中文回答、分步骤说明,并且生成相关问题。 首先,我需要确认用户的需求是搭建Dify平台,可能用于构建知识库应用。引用中的步骤包括Docker部署、Ollama集成、知识库创建和嵌入模型选择。需要将这些步骤逐一解释,确保每个部分都详细,比如安装Docker的部分可能需要先检查系统是否已安装,如果没有,需要指导用户如何安装。然后,部署Dify时,可能需要拉取镜像、运行容器,并检查服务是否正常启动。 接下来是集成Ollama,用户可能不熟悉Ollama是什么,可能需要简要说明它是一个本地运行大模型的工具,然后给出具体的安装和启动命令。然后配置Dify的后台设置,修改模型配置,这里需要确保用户知道如何找到配置文件,可能需要给出路径或者具体的配置示例。 创建知识库的部分,需要引导用户进入Dify界面,创建知识库,上传文档,并选择嵌入模型。这里需要强调嵌入模型的重要性,比如选择beg-m3模型的高效性,以及如何处理文档格式。完成嵌入后,测试知识库的问答功能,确保一切正常。 最后的应用创建部分,用户可能需要将知识库集成到聊天应用中,这里需要指导用户如何在Dify中创建应用,并绑定知识库,设置对话流程等。 同时,用户提到内网穿透,引用[1]是关于Windows搭建网站和内网穿透的内容,虽然用户主要关注Dify,但可能需要在内网穿透部分简要提及相关工具,如frp或Ngrok,并引用[1]作为参考,但根据用户的问题,可能不需要深入展开,除非用户特别询问。 生成的相关问题需要围绕Dify部署的常见问题,比如优化部署、解决集成问题、模型选择、私有化知识库管理以及内网穿透的具体方法。这些问题应该帮助用户进一步解决可能遇到的挑战。 最后,检查回答是否符合所有系统指令:使用正确的中文、分步骤、LaTeX格式正确(但当前内容中可能没有数学表达式,所以不需要处理)、生成相关问题,并在引用处正确标注[^1]和[^2]。 现在需要将这些思考整理成一个结构清晰、步骤分明的回答,确保用户能够按照步骤操作,同时自然地插入引用标注。</think>以下是关于Dify私有化部署的保姆教程,整合了Docker部署、Ollama集成与知识库创建的完整流程: ### 一、Docker环境准备 1. 安装Docker Desktop(Windows/Mac)或Docker Engine(Linux) 2. 验证安装:终端执行`docker --version`,显示版本号即成功[^2] ### 二、部署Dify平台 ```bash # 拉取最新镜像 docker pull dify/dify:latest # 启动容器(含PostgreSQL/Redis) docker run -d --name dify \ -p 8080:8080 \ -v /data/dify/storage:/app/dify/storage \ dify/dify:latest ``` 部署完成后访问`http://localhost:8080`进入控制台 ### 三、Ollama集成配置 1. 安装Ollama(支持macOS/Linux/Windows) ```bash # Linux安装示例 curl -fsSL https://ollama.com/install.sh | sh ollama serve ``` 2. 在Dify后台修改模型配置: ```yaml # config.yaml ollama: base_url: http://localhost:11434 models: - llama2 - mistral ``` ### 四、知识库创建流程 1. **新建知识库** - 登录Dify控制台 → 知识库 → 新建 - 命名规范建议:`部门_类型_版本`(如`技术部_产品手册_v1.2`) 2. **文档上传规范** - 支持格式:PDF/DOCX/Markdown/TXT - 单文件建议<20MB - 批量上传使用ZIP压缩包 3. **嵌入模型选择** ```python # beg-m3模型配置示例 embedding_model = "BAAI/bge-m3" max_seq_length = 8192 ``` 该模型支持中英文混合检索,适合长文本处理 ### 五、应用创建与测试 1. 创建对话型应用 2. 绑定已创建的知识库 3. 配置对话流程: ``` 用户输入 → 意图识别 → 知识库检索 → 模型生成 → 结果反馈 ``` 4. 使用测试窗口验证问答准确性
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值