如何使用 Qwen3 实现 Agentic RAG?

今天,我们将学习如何部署由阿里巴巴最新Qwen 3驱动的Agentic RAG。

这里是我们的工具栈:

  • CrewAI用于代理编排。
  • Firecrawl用于网络搜索。
  • LightningAI的LitServe用于部署。

顶部的视频展示了这一过程。

图表显示了我们的Agentic RAG流程:

图片

  • 检索代理接受用户查询。
  • 它调用相关工具(Firecrawl网络搜索或向量DB工具)以获取上下文并生成见解。
  • 写作代理生成响应。

接下来,让我们实现并部署它!

代码稍后在问题中链接。

这里是为我们的Agentic RAG服务的完整代码。

图片

  • setup方法编排代理。
  • decode_request方法准备输入。
  • predict方法调用Crew。
  • encode_response方法发送响应回来。

让我们下面一步一步理解它

Set up LLM

CrewAI与所有流行的LLMs和提供商无缝集成。

这里是通过Ollama设置本地Qwen 3的方式。

图片

Define Research Agent and Task

这个代理接受用户查询,并使用向量DB工具和由Firecrawl驱动的网络搜索工具检索相关上下文。

再次,在LitServe的setup()方法中放入这个:

图片

Define Writer Agent and Task

接下来,写作代理接受研究者代理的见解以生成响应。

我们再次在LitServe的setup方法中添加这个:

图片

Set up the Crew

一旦我们定义了代理及其任务,我们使用CrewAI将它们编排成一个团队,并将其放入一个设置方法中。

图片

Decode request

我们已经编排了Agentic RAG工作流程,该工作流程将在收到请求时执行。

接下来,从收到的请求体中提取用户查询。

检查下面突出显示的代码:

图片

Predict

我们使用解码的用户查询,并将其传递给之前定义的Crew,以从模型生成响应。

检查下面突出显示的代码:

Encode response

这里,我们可以对响应进行后处理并将其发送回客户端。

注意:LitServe内部按顺序调用这些方法:decode_requestpredictencode_request

检查下面突出显示的代码:

图片

我们完成了服务器代码。

接下来,我们有基本的客户端代码来调用我们使用requests Python库创建的API:

图片

完成!

如何零基础入门 / 学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

那么我作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,希望可以帮助到更多学习大模型的人!至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

👉 福利来袭CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

全套AGI大模型学习大纲+路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

read-normal-img

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉 福利来袭CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

img

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

### Qwen-VL与RAG技术详解 #### 多模态检索增强生成(Retrieval-Augmented Generation, RAG) 多模态检索增强生成是一种结合了外部知识库的检索能力和神经网络的强大生成能力的技术。对于像Qwen-VL这样的大规模视觉语言模型来说,通过集成RAG可以显著提升理解复杂场景的能力并提供更精准的回答。 #### 技术详情 Qwen-VL采用了一种基于Transformer架构的设计,在此基础上加入了专门针对视觉数据优化的功能模块。当涉及到RAG时,该过程通常分为两步: 1. **检索阶段**:给定一个查询(可能是文本描述或图片),系统会先利用预训练好的编码器来提取特征向量表示;随后这些特征被用来索引预先构建的知识图谱或其他形式的数据集,从中找出最相关的条目。 2. **生成阶段**:接着上述找到的相关信息会被送入解码端作为上下文线索之一参与最终输出序列预测的任务中去。此过程中不仅考虑到了原始输入本身还融合进了额外获取来的背景资料从而使得回复更加全面准确[^2]。 #### 实现方式 为了实现这一目标,开发者们往往会选择如下路径来进行开发工作: - 构建高效的索引结构以便快速定位相似项; - 设计合理的评分函数用于衡量候选对象之间的匹配度高低; - 对于跨媒体类型的情况,则需特别注意如何统一不同源之间存在的差异性问题比如尺度变换、语义鸿沟等挑战[^4]。 此外,考虑到实际应用场景中的性能需求,还需要对整个流程做进一步优化以确保实时响应特性不受影响。这可能涉及GPU加速计算资源分配策略调整等方面的工作。 #### 使用教程 以下是简化版的操作指南供初学者参考学习: ```bash # 安装必要的依赖包 pip install qwen-vl rag-toolkit torch transformers # 加载预训练模型 from qwen_vl import QwenVLModel model = QwenVLModel.from_pretrained('path_to_model') # 准备好要处理的数据样本 (这里假设是一个图像文件) image_path = "example.jpg" # 执行推理操作获得结果 result = model(image=image_path).generate() print(result) ``` 这段代码展示了怎样加载指定版本的Qwen-VL模型并对单张照片执行分析任务的过程。当然真实项目里可能会遇到更多复杂的状况因此建议深入研究官方文档及相关案例加深理解掌握技巧[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值