今天,我们将学习如何部署由阿里巴巴最新Qwen 3驱动的Agentic RAG。
这里是我们的工具栈:
- CrewAI用于代理编排。
- Firecrawl用于网络搜索。
- LightningAI的LitServe用于部署。
顶部的视频展示了这一过程。
图表显示了我们的Agentic RAG流程:
- 检索代理接受用户查询。
- 它调用相关工具(Firecrawl网络搜索或向量DB工具)以获取上下文并生成见解。
- 写作代理生成响应。
接下来,让我们实现并部署它!
代码稍后在问题中链接。
这里是为我们的Agentic RAG服务的完整代码。
setup
方法编排代理。decode_request
方法准备输入。predict
方法调用Crew。encode_response
方法发送响应回来。
让我们下面一步一步理解它
Set up LLM
CrewAI与所有流行的LLMs和提供商无缝集成。
这里是通过Ollama设置本地Qwen 3的方式。
Define Research Agent and Task
这个代理接受用户查询,并使用向量DB工具和由Firecrawl驱动的网络搜索工具检索相关上下文。
再次,在LitServe的setup()
方法中放入这个:
Define Writer Agent and Task
接下来,写作代理接受研究者代理的见解以生成响应。
我们再次在LitServe的setup
方法中添加这个:
Set up the Crew
一旦我们定义了代理及其任务,我们使用CrewAI将它们编排成一个团队,并将其放入一个设置方法中。
Decode request
我们已经编排了Agentic RAG工作流程,该工作流程将在收到请求时执行。
接下来,从收到的请求体中提取用户查询。
检查下面突出显示的代码:
Predict
我们使用解码的用户查询,并将其传递给之前定义的Crew,以从模型生成响应。
检查下面突出显示的代码:
Encode response
这里,我们可以对响应进行后处理并将其发送回客户端。
注意:LitServe内部按顺序调用这些方法:decode_request
→ predict
→ encode_request
。
检查下面突出显示的代码:
我们完成了服务器代码。
接下来,我们有基本的客户端代码来调用我们使用requests Python库创建的API:
完成!
如何零基础入门 / 学习AI大模型?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?
”“谁的饭碗又将不保了?
”等问题热议不断。
不如成为「掌握AI工具的技术人」
,毕竟AI时代,谁先尝试,谁就能占得先机!
想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高
那么我作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,希望可以帮助到更多学习大模型的人!至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
👉 福利来袭
CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈
全套AGI大模型学习大纲+路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉 福利来袭
CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。