在大语言模型(LLM)迅猛发展的浪潮中,如何借助合适的工具构建出高效、强大的应用,成为开发者和企业关注的焦点。LLM 应用框架如同搭建应用的基石,为开发者提供了丰富的工具和架构支持,极大地降低了开发难度,推动着各类智能应用的快速落地。
本文将比较十款主流开源框架:LangChain、Dify、LlamaIndex、Haystack、Flowise、Langflow、CrewAI、AutoGPT、n8n 和 MaxKB,帮助你选择最适合项目的工具。
框架简介
下面为大家简要介绍这十款框架,以便清晰了解它们的定位及核心功能:
框架 | 类型 | 核心功能 | 许可证 | 主要语言 |
---|---|---|---|---|
LangChain | 开发者工具包 | 模块化LLM编排、RAG、代理 | MIT | Python, JS/TS |
Dify | 低代码平台 | 快速应用开发、RAG、代理 | Apache 2.0 | Python, JS |
LlamaIndex | 数据框架 | 数据索引、检索、RAG | MIT | Python |
Haystack | NLP管道框架 | 语义搜索、问答、RAG | Apache 2.0 | Python |
Flowise | 低代码平台 | 基于LangChain的视觉化应用构建 | Apache 2.0 | JS/TS |
Langflow | 低代码平台 | 视觉化工作流、RAG、代理 | MIT | Python |
CrewAI | 代理框架 | 多代理协作 | MIT | Python |
AutoGPT | 自主代理 | 目标导向的任务自动化 | MIT | Python |
n8n | 工作流自动化 | 通用自动化,支持LLM集成 | Fair-code | JS/TS |
MaxKB | 知识库平台 | 知识管理、RAG | AGPL-3.0 | Python |
详细对比
我们将从七个关键维度对这些框架展开对比,具体包括易用性、定制化、开发速度、可扩展性、社区支持、集成能力和适用场景。
1. 易用性
- LangChain:由于需要具备Python或JS编程经验,其学习曲线相对较陡,因此更适合有技术基础的开发者使用。
- Dify:采用低代码拖拽界面,对于非技术用户而言十分友好,能够帮助他们快速上手操作。
- LlamaIndex:难度处于中等水平,因专注于数据任务,所以需要使用者具备Python基础。
- Haystack:对开发者较为友好,其管道设计直观易懂,很适合处理NLP任务。
- Flowise:属于低代码平台,基于LangChain开发,拖拽式的设计对新手很友好。
- Langflow:具备视觉化界面,且支持代码导出,既能满足新手需求,也能适配开发者的使用习惯。
- CrewAI:难度中等,需要使用Python,代理设置较为简单,但使用者要理解角色分工。
- AutoGPT:通过命令行操作,过程较为复杂,不适合初学者使用。
- n8n:属于低代码自动化工具,界面直观,适合进行工作流设计。
- MaxKB:创建知识库的操作比较简单,但由于文档不足,会增加使用者的学习成本。
推荐:新手可以选择 Dify;若想兼顾易用性与灵活性,那么 Langflow 是不错的选择。
2. 定制化
- LangChain:具有高度模块化的特点,支持链、代理、记忆等功能,且拥有600多种集成方式。
- Dify:可通过视觉组件进行定制,灵活性处于中等水平,但在处理复杂逻辑时会受到限制。
- LlamaIndex:在数据索引和检索的定制方面能力较强,支持多种向量库。
- Haystack:管道设计灵活,适合对搜索和问答功能进行定制。
- Flowise:受LangChain的限制,在非标准流程的定制上能力较弱。
- Langflow:支持代码级别的调整,灵活性较高。
- CrewAI:专注于多代理领域,角色和任务均可进行深度定制。
- AutoGPT:在任务自动化方面较为灵活,但缺乏结构化工具。
- n8n:在自动化定制方面能力较强,但在LLM任务上稍显不足。
- MaxKB:在知识库定制方面处于适中水平,在其他场景中的应用则存在局限。
推荐:对于复杂项目,建议选择 LangChain;若涉及数据任务,LlamaIndex 更为合适。
3. 开发速度
- LangChain:需要进行编码,初期开发速度较慢,但借助组件复用能够加快后续的迭代进程。
- Dify:凭借模板和视觉流,能够实现原型的最快开发。
- LlamaIndex:在RAG和搜索应用的开发上效率较高。
- Haystack:管道设置速度快,但在处理复杂任务时需要进行调优。
- Flowise:采用拖拽式开发,简单应用能够快速上线。
- Langflow:通过视觉流加快原型开发,且支持代码导出以用于生产环境。
- CrewAI:代理应用的开发速度处于中等水平,不过需要先定义任务。
- AutoGPT:配置和调试过程较慢,实验性较强。
- n8n:自动化流程的开发速度快,但在LLM应用开发上稍慢。
- MaxKB:知识库的开发速度快,但通用应用的开发速度较慢。
推荐:若要快速开发原型,可选择 Dify;若倾向于视觉化开发,Flowise 或 Langflow 都是不错的选择。
4. 可扩展性
- LangChain:借助LangServe和LCEL,能够支持企业级的扩展需求。
- Dify:适合中小规模的应用,在高流量场景下表现稍弱。
- LlamaIndex:在数据密集型应用的扩展方面能力较强,适合处理大数据集。
- Haystack:在企业级搜索任务中表现出色。
- Flowise:受LangChain的限制,可扩展性有限。
- Langflow:支持一键微服务部署,适合复杂工作流的扩展。
- CrewAI:代理系统的扩展能力处于中等水平,在大规模应用中的表现尚未得到充分验证。
- AutoGPT:尚未达到生产就绪状态,在大规模应用中稳定性不足。
- n8n:在自动化扩展方面能力较强,但在LLM应用扩展上稍显不足。
- MaxKB:在知识库扩展方面可行,但在通用场景中的扩展性未经验证。
推荐:对于企业级应用,可选择 LangChain 和 Haystack;若涉及数据任务,LlamaIndex 是更优选择。
5. 社区与支持
- LangChain:拥有最大的社区(有3000多名贡献者),文档详尽,Slack社区活跃度高。
- Dify:社区增长迅速(GitHub星标数达34.8k+),文档较为简单,更新频率高。
- LlamaIndex:社区实力强大,文档清晰易懂,GitHub和Discord社区活跃度高。
- Haystack:社区发展稳定,有Deepset提供支持,文档质量较高。
- Flowise:社区规模处于中等水平,依赖LangChain生态。
- Langflow:社区处于增长阶段,文档质量良好,开发活动活跃。
- CrewAI:社区规模较小,专注于代理场景。
- AutoGPT:早期曾引发热潮,但目前社区活跃度有所下降。
- n8n:在自动化领域拥有强大的社区,但在AI支持方面相对较少。
- MaxKB:社区规模较小,文档内容有限。
推荐:若看重社区支持,LangChain 是首选;若注重文档质量,LlamaIndex 或 Haystack 更为合适。
6. 集成能力
- LangChain:拥有600多种集成方式(包括OpenAI、Hugging Face、向量库等)。
- Dify:提供预建集成(如OpenAI、Zapier),但集成数量较少。
- LlamaIndex:在向量库(如FAISS、Pinecone)和数据连接方面能力较强。
- Haystack:支持transformer、向量库、API等集成。
- Flowise:继承了LangChain的集成能力,但集成范围有限。
- Langflow:能够无缝对接LangChain和Hugging Face。
- CrewAI:基于LangChain开发,集成功能专注于代理领域。
- AutoGPT:集成方式少,需要手动进行配置。
- n8n:拥有400多种自动化集成方式,但并非以LLM为中心。
- MaxKB:集成了知识库工具,对LLM的支持处于基础水平。
推荐:若追求集成的广度,LangChain 是最佳选择;若侧重数据集成,LlamaIndex 更为合适。
7. 适用场景
- LangChain:适用于聊天机器人、复杂工作流、RAG、代理等场景。
- Dify:适合开发客服机器人、最小可行产品、简单RAG等。
- LlamaIndex:可应用于知识库、语义搜索、RAG等场景。
- Haystack:适用于企业搜索、问答、文档分析等任务。
- Flowise:适合开发简单聊天机器人、进行数据分析等。
- Langflow:可用于原型设计、复杂管道搭建、教育工具开发等。
- CrewAI:适用于多代理系统、研究自动化等场景。
- AutoGPT:可用于实验性自动化、任务驱动代理等领域。
- n8n:适合业务自动化、LLM增强工作流等场景。
- MaxKB:专注于知识管理、内部问答等应用。
推荐:若需要多功能的框架,LangChain 是首选;若针对专业任务,Haystack 或 LlamaIndex 表现更出色。
如何选择?
- 新手或非技术用户:可以选择 Dify 或 Flowise,它们属于低代码平台,能帮助用户快速上手。
- 需要高度定制的开发者:若开发复杂应用,可选择 LangChain;若希望兼顾视觉化操作和代码开发,Langflow 是不错的选择。
- 数据密集型任务:可选择 LlamaIndex(用于索引/检索)或 Haystack(用于搜索管道)。
- 多代理协作:CrewAI(适用于代理系统)或 Langflow(适用于视觉代理流)是合适的选择。
- 自动化需求:若涉及业务流程自动化,可选择 n8n;若需要实验性自主任务自动化,AutoGPT 较为合适。
- 知识库管理:MaxKB(专用知识库)或 LlamaIndex(通用RAG)能满足需求。
总结
在LLM应用生态中,每个框架都有其独特的定位:
- LangChain 以多功能和强大的集成能力著称,适合复杂项目。
- Dify 能让非技术用户也快速开展开发工作。
- LlamaIndex 和 Haystack 在数据和搜索任务中表现卓越。
- Flowise 和 Langflow 简化了开发流程,兼顾了易用性。
- CrewAI 和 AutoGPT 专注于代理和自动化领域。
- n8n 连接了自动化与AI,MaxKB 则专注于知识管理。
很多时候,不同框架可以结合使用。在选择框架时,需要综合权衡项目复杂度、团队技术水平和扩展需求。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。