
Keras深度学习
文章平均质量分 65
深度学习:主要以keras框架为主
python__reported
python菜鸟入门,期待成为数据分析的大神;
互相帮助!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
交叉熵的理解:理解交叉熵的时候勿引入熵的概念来理解
交叉熵的理解:理解交叉熵的时候勿引入熵的概念来理解结论理解交叉熵的时候勿引入熵的概念来理解原因每当我试图交叉熵的时候,网上找的科普文章都会引入熵的概念,说要从熵的概念入手,然后感觉自己更加迷茫了。然后一堆名词就过来了,如信息量、熵、概率、相对熵、交叉熵等等理解但是其实完全不用管它,不用管熵这个概念,直接损失函数的目的出发。损失函数是寻找预测的标签与真实标签的差异,均方误差(MSE)、均方根误差(RMSE)、MAE(平均绝对误差)都是为了这一个目的。而交叉熵的log,也能实现这一原创 2021-10-27 13:11:42 · 499 阅读 · 0 评论 -
RTX3060适配的tensorflow
RTX3060适配的tensorflowRTX3060及以上适配的tensorflow适宜人群原因魔改版tensorflowRTX3060及以上适配的tensorflow适宜人群不适用tensorflow2.0以上,只使用tensorflow1.0版本原因RTX3060以上版本最高支持cuda11.4然而实际上只支持cuda11以上;cuda11以上不支持tensorflow<2.0所以,用不了魔改版tensorflow大佬范沅魔改了编译的是nvidia魔改版的tensorflo原创 2021-10-15 22:42:56 · 2378 阅读 · 1 评论 -
深度学习的特征与标签的维度(keras)
@TOC)一、结论Dense层维度要与标签维度一致,根据需要的一致;[1,2,3]对应0与[1,2,3]对应[5,6,8]即可。如文本分类,则标签不需要one-hot,dense层不需要TimeDistributed因为文本分类 train_x(16656, 22) ,使得22个字的评论与标签0或者1,进行匹配,所以标签不需要one-hot,dense层不需要TimeDistributed如中文分词,需要字与标签一一对应,标签one-hot,使得标签升维;TimeDistributed使得x与y维原创 2021-07-22 16:45:40 · 5849 阅读 · 0 评论 -
Keras.Backend的一些理解
Keras.Backend的一些理解(备份)一、理解二、重要的一些backend函数(方法)一、理解我理解的深度学习层级由大到小为:Model>layer>函数,方法形成layer层,layer层形成model,keras.backend即后端,其实就是将深度学习向比layer更小的方法即函数下沉,更能实现灵活性;这里的方法即函数层,其实就是一些基本的数值处理方法,例如求均值的mean、求最大值的max,求点积的dot等,这些方法组合就可以形成一个layer,loss等基本的层。二、重要的原创 2021-07-10 15:08:14 · 9133 阅读 · 2 评论 -
裁判文书上诉理由分类统计
裁判文书上诉理由分类统计一、统计结果二、实现方法(一)裁判文书上诉理由提取1、分类标准2、裁判文书内容提取方式3、实现代码4、标签贴好后三、文本分类(一)文本分类源码来源(二)数据结构和修改的地方(三)预测过程四、结语一、统计结果对这12927份裁判文书进行清洗后,有效文书数量约为10858份,有效率约为84%。二、实现方法(一)裁判文书上诉理由提取1、分类标准不认罪、罪名异议、量刑过重,量刑异议、程序瑕疵、其它。这一上诉理由分类的依据为罪名、量刑、程序。即犯罪嫌疑人被告人的上诉理由为一审事原创 2020-10-31 21:32:04 · 1199 阅读 · 0 评论 -
text-cnn裁判文书分类
text-cnn裁判文书分类一、数据集二、训练过程三、成果一、数据集使用爬虫获取的26万份裁判文书,可以在链接: 裁判文书.训练模型源自链接: Text Classification with CNN and RNN.二、训练过程一共训练5轮数据格式为目录:标签名,文本为内容写入方法def wenshu_cut(): with open(r"J:\PyCharm项目\github项目\文本分类\罪名分类\罪名分类.json", "r")as f: train_text = {原创 2020-08-29 22:08:49 · 3842 阅读 · 18 评论 -
关于可视化神经网络中间层的详细说明
关于可视化神经网络中间层的详细说明一、对一些处理的意义的说明二、代码一、对一些处理的意义的说明activation_model = models.Model(inputs=model.input, outputs=layer_outputs)#此处的inputs是之前导入的模型,model = load_model('...(解释:自己的模型)') # 特征图的形状(1,宽,高,n_features)size = layer_activation.shape[1]# n_cols定义一个原创 2021-01-10 15:04:08 · 1369 阅读 · 0 评论 -
Keras 生成器报错:Tensor object has no attrbute ‘assign‘
Tensor has no attrbute assign一、keras生成器重心二、keras生成器三、报错一、keras生成器重心我是在使用keras生成器时出现了这个报错并引发后续一系列报错keras生成器使用的是studyer_domi:《2020-12-11 keras通过model.fit_generator训练模型(节省内存)》链接: [l2020-12-11 keras通过model.fit_generator训练模型(节省内存)(https://blog.csdn.net/qingf原创 2021-02-02 13:47:24 · 1441 阅读 · 0 评论