Pytorch-GPU版本详细安装教程——以YOLOv5为例

  本文详细讲解了如何安装YOLOv5网络依赖的GPU版本的Pytorch,本人自从入坑YOLOv5后,前前后后配置了近10次环境,有时代码调好能跑了,放上一两个月再跑,竟然报错了!

  最近重装了一次电脑,重新配置了一遍环境,于是痛下决心要记录下配置环境中可能出现的问题,这里需要强调的是,我是在配好环境后写的这篇文章,大多图片是采用别人博客中的图片(在Refenrence中表明了出处,实在不想再重新配置一遍了)

  本文重点讲解CUDA和Pytorch-gpu版本的安装,他俩的版本一定要对应起来,否则会出现各种问题(比如模型可以训练,但训练结果为0等等)

CUDA安装

首先,查看自己电脑支持安装的CUDA的版本
在cmd中输入

nvidia-smi

按下回车可显示
在这里插入图片描述
从上图可看出,我的电脑的显卡驱动版本是522.25,最高支持11.8版本的cuda(也就是可以安装版本号≤11.8的CUDA)
然后去英伟达官网:https://developer.nvidia.com/cuda-toolkit-archive
下载对应的CUDA版本,我下载的版本的是CUDA10.2
在这里插入图片描述
注:这里选择CUDA版本根据以下原则选择
1、显卡驱动最高支持的cuda版本
2、cuda与torch版本对应(这个在“Pytorch-gpu安装这一章会详细讲解”)
我这里选择的是Windows 10 64位的安装包,然后点击“Download”下载,下载完成后双击exe文件进行安装
在这里插入图片描述
安装时选择默认路径即可
在这里插入图片描述
然后选择自定义安装
在这里插入图片描述
把图示圈起来的对勾去掉
在这里插入图片描述
这三个地址十分重要,后续我们将进行环境变量的配置,不要改变路径。
在这里插入图片描述
之后等待安装完成即可。
在这里插入图片描述
配置CUDA环境变量,首先右键我的电脑-属性-高级系统设置-环境变量
在这里插入图片描述
在Path中手动添加如下路径:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\lib\x64
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\include
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\extras\CUPTI\lib64
C:\ProgramData\NVIDIA Corporation\CUDA Samples\v10.2\bin\win64
C:\ProgramData\NVIDIA Corporation\CUDA Samples\v10.2\common\lib\x64

在这里插入图片描述
在这里插入图片描述
我们可以验证一下cuda是否成功,按win+R 输入cmd

nvcc -V

在这里插入图片描述

CUDANN安装

首先,到英伟达官网下载与CUDA版本匹配的cudnn:https://developer.nvidia.com/cudnn
这里需要我们注册一个账号,然后登录下载,下载时一定注意与CUDA的版本对应,如果你下载的CUDA为10.2则下载第二个。
在这里插入图片描述
下载之后,解压缩,将CUDNN文件夹中的各自的bin、clude、lib文件夹中的内容,直接复制添加到CUDA的刚刚安装目录的对应相同名字的文件夹下。

Anaconda安装

安装较为简单,详细请参考:
https://blog.csdn.net/in546/article/details/117400839

Pycharm安装

安装较为简单,详细请参考:
https://cloud.tencent.com/developer/article/1504718

Pytorch-gpu安装

torch- torchvision- python版本对应关系

CUDA Toolkit 和Pytorch的对应关系在这里插入图片描述
使用下述命令安装torch、torchvision、torchaudio的gpu版本:

pip3 install torch==1.8.1+cu102 torchvision==0.9.1+cu102 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.htmlhttps://download.pytorch.org/whl/torch_stable.html

然后在anaconda的pytorch虚拟环境中安装yolov5项目依赖的各种包,使用pip install ******

由于yolov5的requirement.txt中使用的pycocotools,但我下载的是pycocotools-windows。
所以将requirement.txt中的pycocotools改成pycocotools-windows,在运行代码时会检查requirements.txt中的包是否安装,不替换的话会报错

Reference

https://blog.csdn.net/qq_53357019/article/details/125725702
https://blog.csdn.net/qq_39763246/article/details/122250062

### 配置 Python 3.10 和 PyTorch-GPU 支持 为了在 Windows 系统中为 Python 3.10 安装并配置支持 GPUPyTorch,以下是详细的说明: #### 1. 使用官方推荐的方式安装 PyTorch PyTorch 提供了一个专门的页面来帮助用户选择适合其环境的安装命令。对于 Python 3.10 和 CUDA 版本的选择,可以通过访问 [PyTorch Get Started 页面](https://pytorch.org/get-started/locally/) 并按照提示操作。 假设当前使用的 CUDA 是 `cu121`(CUDA 12.1),则对应的安装命令如下所示: ```bash pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121 ``` 此命令会自动匹配适用于 Python 3.10 的最新稳定版 PyTorch 及其依赖项[^2]。 --- #### 2. 替代方案:手动下载 `.whl` 文件进行离线安装 如果遇到网络问题或者特定版本的需求无法通过在线方式解决,则可以选择手动下载 `.whl` 文件完成安装。 ##### 下载步骤 前往 [PyTorch Stable Releases](https://download.pytorch.org/whl/torch_stable.html),根据以下条件筛选合适的文件: - **操作系统**: Windows - **Python 版本**: 3.10 - **CUDA 版本**: cu121 或其他适配的 CUDA 版本 - **包名**: 包括 `torch`, `torchvision` 如,可能需要下载类似于以下命名模式的文件: - `torch-2.x.x-cp310-none-win_amd64.whl` - `torchvision-0.y.z-cp310-none-win_amd64.whl` ##### 安装步骤 将上述 `.whl` 文件保存到本地目录后,在 Anaconda Prompt 中运行以下命令依次安装: ```bash pip install C:\path\to\torch-*.whl pip install C:\path\to\torchvision-*.whl ``` 需要注意的是,必须先安装 `torch` 后再安装 `torchvision`,因为后者依赖前者[^3]。 --- #### 3. 验证安装是否成功 完成安装之后,可通过以下脚本测试 PyTorch 是否能够正常调用 GPU 功能: ```python import torch print(f"Is CUDA available? {torch.cuda.is_available()}") print(f"CUDA version: {torch.version.cuda}") print(f"Torch version: {torch.__version__}") ``` 如果一切设置无误,输出应显示 CUDA 已启用以及具体的版本号信息。 --- #### 注意事项 - 如果使用 Conda 创建虚拟环境,默认情况下可能会连接较慢的镜像源。此时可考虑更换为清华大学开源软件镜像站作为加速手段[^1]: ```bash conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ ``` - 对于某些特殊情况下的 HTTPS 报错问题,尝试切换至 HTTP 协议或采用离线安装方法可能是有效的解决方案之一。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

晓shuo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值