Agentic RAG 和聊天机器人、AI 代理、DeepSeek、LLAMA 3.2 代理、FAISS 向量数据库、LLM RAG、Lang Graph RAG、Ollama RAG。
您将会学到
-
使用 Ollama 设置和管理本地 LLMs。
-
使用 LangGraph 构建动态、具备记忆功能的聊天机器人。
-
将 AI 与数据库集成以实现智能 MySQL 查询执行。
-
使用私有数据集和嵌入创建 RAG 工作流。
要求
-
基本的编程知识(最好是 Python)。
-
一台可以上网并能安装软件的计算机。
-
熟悉数据库和基本查询编写(可选但有帮助)。
-
需要有基本的 Langchain 使用经验。
描述
深入探索前沿 AI 开发的世界,通过这门全面的 LangGraph、Ollama 和检索增强生成(RAG)课程。无论是初学者还是专业人士,这门课程都能帮助你掌握构建聊天机器人、本地管理 LLMs 以及无缝集成强大数据库查询功能的技能。
在逐步指导下,你将探索:
-
使用 Ollama 设置和基准测试本地 LLMs。
-
使用 LangGraph 和 LangChain 构建最先进的聊天机器人。
-
高级类型提示、数据验证和面向对象编程原则,以实现干净高效的代码。
-
为 MySQL 查询和 RAG 工作流设计智能代理。
解锁你的潜力,学习如何创建动态的、具有记忆功能的聊天机器人,处理私有数据集,并掌握基于图的编程以应用于 AI 项目。
Ollama 配置以使用本地 LLM
学习如何安装和配置 Ollama 以与本地 LLMs 协同工作。探索可用的模型,运行基准测试,并使用强大的 Ollama 命令高效地管理和交互 AI 模型。
LangChain 入门
探索 LangChain 及其将 LLMs 集成到应用程序中的能力。从安装到 API 调用,本部分提供了利用 LangChain 构建智能系统的基础知识。
LangGraph 基础
深入了解 LangGraph,这是一种受状态机启发的工具,用于设计 AI 系统。学习导航其 Graph 和 ToolNode 模块,并创建使用基于图的编程增强功能的交互式聊天机器人。
类型提示和数据验证在 LangGraph 中的应用
探索类型提示、数据验证和面向对象编程原则在 AI 开发中的重要性。掌握如 TypedDict 和 Pydantic 等工具,为你的项目编写干净、高效且可靠的代码。
LangGraph 中的图定义
深入了解 LangGraph 中的图定义概念,以构建复杂的系统。学习这些定义如何为你的 AI 工作流程带来清晰和结构。
使用 LangGraph 和 Ollama 进行聊天机器人开发
结合 LangGraph 和 Ollama 的力量来构建功能丰富的聊天机器人。实现工具节点,设计 robust 的系统架构,并添加记忆功能,以实现互动和智能的用户对话。
具身文本到 MySQL 查询执行
学习将 LLMs 与 MySQL 集成以实现无缝查询执行。构建能够生成和执行数据库查询的代理,将结果连接到 AI 系统,并创建智能的数据库驱动工作流。
具身 RAG 与私有数据集
掌握针对私有数据集的检索增强生成(RAG)技术。本节将教你准备数据集、创建嵌入、将它们存储在向量数据库中,并实现能够进行实时数据检索和处理的 RAG 代理。
此课程面向哪些人:
- AI 爱好者和开发者:任何对构建聊天机器人并将 LLMs 集成到应用程序中感兴趣的人。
- 初学者程序员:希望通过实际操作示例开始 AI 之旅的人。
- 数据库专业人士:希望探索 AI 如何增强数据库查询自动化的人。
- 技术革新者:渴望实施如 RAG 和图编程等高级工作流的专业人士
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓