该问题归类到Transformer架构问题集——位置编码——相对位置编码。请参考LLM数学推导——Transformer架构问题集。
在深度学习的精密仪器中,位置编码与词嵌入如同两个紧密咬合的齿轮,它们之间的耦合效应深刻影响着模型容量这一核心性能指标。这种影响既可能像润滑剂般让齿轮高效运转,也可能因咬合过紧导致机械卡顿。接下来,我们将通过严谨的数学推导、真实的研究案例与可复现的代码,全方位剖析这一复杂而关键的机制。
1. 位置编码与词嵌入基础概念回顾
1.1 位置编码:序列的 “时空坐标”
自然语言中的语序承载关键语义,如 “我喜欢你” 与 “你喜欢我” 含义迥异。位置编码的使命,便是为模型赋予感知序列顺序的能力。绝对位置编码通过固定向量为每个位置分配 “身份证”,相对位置编码则聚焦位置间的相对关系。以绝对位置编码为例,将位置 i 映射为向量 ,其本质是建立位置到向量空间的映射关系,为模型理解序列 “时空” 提供基础。
1.2 词嵌入:词语的 “语义指纹”
词嵌入技术将词语转化为连续向量空间中的点,使语义相近的词语在向量空间中彼此靠近。例如,通过训练得到词嵌入矩阵 ,词语 w 对应的词嵌入向量
,实现了词语到语义向量的转换,为模型捕捉语义关联提供了数学表达。
2. 位置编码与词嵌入的耦合效应剖析
2.1 耦合的数学定义与表现形式
在 Transformer 的自注意力机制中,位置编码与词嵌入的耦合表现为二者信息的融合参与注意力分数计算。设查询向量 、键向量
由词嵌入与位置编码共同构成,即
,
。
注意力分数 的计算公式为: