该问题归类到Transformer架构问题集——位置编码——动态/自适应编码。请参考LLM数学推导——Transformer架构问题集。
1. LSTM 与动态位置编码背景介绍
在序列数据处理领域,长短期记忆网络(LSTM)是一类特殊的循环神经网络(RNN),凭借其独特的门控机制有效解决了传统 RNN 在处理长序列时面临的梯度消失和梯度爆炸问题,在自然语言处理、时间序列预测等众多任务中表现出色。然而,传统 LSTM 在处理序列中的位置信息时存在一定局限性,难以充分捕捉位置相关的语义信息。
动态位置编码(Dynamic PE)的提出旨在弥补这一不足,为 LSTM 提供更加灵活且自适应的位置表示方式。在自然语言处理任务中,词语的顺序和位置对于语义理解至关重要,动态位置编码能够帮助 LSTM 更好地感知和利用这些位置信息,从而提升模型在各类任务中的性能。
2. 理论推导:探寻 LSTM 更新门控制公式的奥秘
2.1 LSTM 基础结构与门控机制
LSTM 的核心结构包括细胞状态(Cell State)、输入门(Input Gate)、遗忘门(Forget Gate)和输出门(Output Gate)。细胞状态如同一条信息传送带,在整个序列处理过程中传递长期记忆。输入门决定将多少新信息添加到细胞状态中,遗忘门控制细胞状态中旧信息的保留程度,输出门则确定最终输出的隐藏状态。
其具体数学表达式如下:
- 输入门:
- 遗忘门:
- 细胞状态更新:
- 细胞状态: