Transformer数学推导——Q46 推导动态位置编码(Dynamic PE)的LSTM更新门控制公式

该问题归类到Transformer架构问题集——位置编码——动态/自适应编码。请参考LLM数学推导——Transformer架构问题集

1. LSTM 与动态位置编码背景介绍

在序列数据处理领域,长短期记忆网络(LSTM)是一类特殊的循环神经网络(RNN),凭借其独特的门控机制有效解决了传统 RNN 在处理长序列时面临的梯度消失和梯度爆炸问题,在自然语言处理、时间序列预测等众多任务中表现出色。然而,传统 LSTM 在处理序列中的位置信息时存在一定局限性,难以充分捕捉位置相关的语义信息。

动态位置编码(Dynamic PE)的提出旨在弥补这一不足,为 LSTM 提供更加灵活且自适应的位置表示方式。在自然语言处理任务中,词语的顺序和位置对于语义理解至关重要,动态位置编码能够帮助 LSTM 更好地感知和利用这些位置信息,从而提升模型在各类任务中的性能。

2. 理论推导:探寻 LSTM 更新门控制公式的奥秘

2.1 LSTM 基础结构与门控机制

LSTM 的核心结构包括细胞状态(Cell State)、输入门(Input Gate)、遗忘门(Forget Gate)和输出门(Output Gate)。细胞状态如同一条信息传送带,在整个序列处理过程中传递长期记忆。输入门决定将多少新信息添加到细胞状态中,遗忘门控制细胞状态中旧信息的保留程度,输出门则确定最终输出的隐藏状态。

其具体数学表达式如下:

  • 输入门:i_t = \sigma(W_{ii}x_t + W_{hi}h_{t - 1} + b_i)
  • 遗忘门:f_t = \sigma(W_{if}x_t + W_{hf}h_{t - 1} + b_f)
  • 细胞状态更新:\tilde{C}_t = \tanh(W_{ic}x_t + W_{hc}h_{t - 1} + b_c)
  • 细胞状态:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

墨顿

唵嘛呢叭咪吽

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值