目录
消失的数字:面试题 17.04. 消失的数字 - 力扣(LeetCode)
旋转数组OJ链接:189. 轮转数组 - 力扣(LeetCode)
1.算法效率
1.1如何衡量一个算法的好坏
如:
long long Fib(int N)
{
if(N < 3)
return 1;
return Fib(N-1) + Fib(N-2);
}
以上为斐波那契数列的递归实现方法非常简洁,但简介就一点好吗?
1.2算法的复杂度
算法在编写成可执行程序后,运行时需要耗费时间资源和空间 ( 内存 ) 资源 。因此 衡量一个算法的好坏,一般 是从时间和空间两个维度来衡量的 ,即 时间复杂度和空间复杂度 。时间复杂度主要衡量一个算法的 运行快慢 ,而空间复杂度主要衡量一个算法运行所需要的 额外空间 。在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再 特别关注一个算法的空间复杂度 。
2.时间复杂度
2.1时间复杂度的概念
时间复杂度的定义:在计算机科学中,
算法的时间复杂度是一个
函数(此为数学意义上的函数
)
,它定量描述了该算法的运行时间。一 个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。
但是我们需要每个算法都上机测试吗?
是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的
执行次数
,为算法
的时间复杂度。
即:找到某条基本语句与问题规模
N
之间的
数学表达式
,就是算出了该算法的时间复杂度。
如:
void Func1(int N)
{
int count = 0;
for (int i = 0; i < N ; ++ i)
{
for (int j = 0; j < N ; ++ j)
{
++count;
}
}
for (int k = 0; k < 2 * N ; ++